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Abstract—Spectrum crowdsensing is a paradigm where par-
ticipants upload their collected spectrum data to the cloud
for extracting analytics. First movers like Microsoft Spectrum
Observatory and Electrosense, though with support from leading
industry, research, and government, still suffer from sustainabil-
ity challenges. In this paper, we present Fiesta, a sustainable
framework for spectrum crowdsensing. On the technology side,
we use federated learning and blockchain to decentralize the
data analysis computations. For individual participants, minimal
invasion of privacy suppresses concerns regarding large-scale
adoption. From organizations’ perspectives, using blockchain
avoids single point of failure and enhances the robustness of
the entire system against malicious attacks. On the policy side,
we propose a reward quantification mechanism to motivate
engagement. Potential funding sources to ensure ongoing sustain-
ability are also discussed. We have demonstrated Fiesta through
simulation testbeds and real-world deployments with two demo
tasks. Results show that Fiesta, as a decentralized framework, can
preserve user privacy, enhance system robustness, maintain data
fidelity compared with traditional methods, and fairly reward
participants. We believe Fiesta is a stepping stone for the future
spectrum crowdsensing paradigm.

I. INTRODUCTION

The scarcity of wireless spectrum and the exploding mobile
data traffic compel regulatory authorities to consider opening
previously allocated bands for secondary users, such as TV
whitespace [25] and CBRS band [22], in addition to lever-
aging existing unlicensed bands [5]. The feasibility of such
endeavors depends strongly on a comprehensive understanding
of how these bands are used by primary users. This requires
large-scale spectrum sensing measurements across frequency,
temporal, and spatial domains.

To fulfill this requirement, crowdsensing [23] is a promis-
ing spectrum measurement paradigm. For example, Microsoft
Spectrum Observatory [1] and Electrosense [20] make efforts
to achieve national-wide or even continental-wise spectrum
measurement using Software Defined Radio (SDR) platforms.

However, those prior projects were designed without con-
sidering sustainability, inevitably leading to the consequence
that the cost of running and maintaining a network for the sole
purpose of performing spectrum measurements is unjustified.
In fact, both of them are shutting down.

With sustainability in mind, we envision that a large-scale
spectrum crowdsensing system should have a three-tier archi-
tecture. At the bottom, mobile devices owned by individuals
have spectrum sensing capability and collect spectrum mea-
surements. In the middle, servers from organizations perform
data analysis for spectrum-related applications. At the top,
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the administrator coordinates the whole system, for example
deciding the target frequency range and what kind of spectrum-
related data analysis should be performed.

Despite the proposed three-tier architecture, there are still
several challenges before realizing the vision at scale.

• Prior efforts, including TxMiner [26] and BigSpec [24],
require contributors to upload raw data records with meta-
data, e.g., GPS location and timestamps, to a centralized
cloud for analysis. However, this information is private
for participants, especially in the scenario of mobile
sensing. The spectrum data itself could also be sensitive,
and in some cases, information could be decoded from
captured IQ data or PSD (Power Spectrum Density) data.

• Another technical challenge is that sending data to a
centralized data analysis platform poses the risk of single
point of failure and is more error-prone as one single
entity owns the computing infrastructure entirely.

• On the policy side, without a proper reward mechanism to
compensate, all these privacy concerns discourage mobile
spectrum crowdsensing participants from contributing
more data. Organizations may be unwilling to collaborate
with little incentive.

To address these concerns, we present Fiesta, a sustainable
framework for large-scale spectrum crowdsensing practicing
the three-tier architecture.

First, we propose to move partial data analysis from the
cloud server to mobile devices. We introduce and adapt fed-
erated learning [10] into the spectrum measurement context,
where the user shares useful information in the format of a
machine learning model instead of raw data. The scenario
becomes challenging considering ordinary federated learning
requires the participants to be synchronized in the sense
that the model aggregation is performed after all of the
participants have completed a local training round. However,
synchronization is hard to achieve when scaling to a large
scale where each device has its schedule of sampling and
training, so tackling this asynchronous setup is a must. We
propose a novel aggregation policy and empirically show its
enhancement compared with vanilla federated learning.

Second, we eliminate the risk of single point of failure
and enhance system robustness by using a distributed ledger,
i.e., blockchain, to aggregate and archive the learned model.
We design a block structure that contains the current global
model so that sharing the data analysis result is naturally
supported. To make it more efficient and pragmatic for large-
scale deployment, we also solve several implementation issues,



including how to support oversized models and the evolution
of the model structure.

Third, a reward quantification mechanism based on this
blockchain is carefully designed to further promote the partic-
ipation of both individuals and organizations. In the vision of
Fiesta, individuals and organizations could gain rewards either
by contributing useful information or joining the blockchain
and helping with model aggregation. Administrators and au-
thorities who could benefit from gathered spectrum data (e.g.,
FCC, 3GPP, operators, and research institutions) are expected
to maintain this blockchain and provide rewards.

To demonstrate the efficacy of Fiesta, we have simulated,
implemented, as well as deployed Fiesta using mobile devices
connected to our spectrum sensor boards to learn the utilization
of TV and LTE bands.

In summary, we make the following contributions:
• To the best of our knowledge, this is the first work that

proposes and designs a sustainable spectrum crowdsensing
system at scale. The three-tier architecture based on indi-
viduals who own mobile devices with sensing capabilities,
data aggregation servers from multiple organizations, and
the administrator coordinating the whole system is crucial
for long-term operation.

• We solved multiple technical and policy-related challenges
to realize this vision. By adapting federated learning and
blockchain to the spectrum sensing context, we have mit-
igated the privacy concerns of the individual participants,
addressed the risk of single point of failure, and encouraged
larger engagement by designing a reward quantification
mechanism based on the blockchain. Potential funding
sources to ensure ongoing sustainability are also discussed.

• We have implemented and deployed Fiesta in a mid-
size US city for 3 months and collected 220K lines
of PSD data records for 600 hours using Android
smartphones. We achieve 4dB accuracy for estimat-
ing TV channels’ power across space and 5dB ac-
curacy for reconstructing LTE band PSD data using
machine learning models. The dataset is available at
https://www.kaggle.com/datasets/neutrinoliu/fiesta, and the
code is available at https://fiesta4spectrum.github.io/.

II. SYSTEM DESIGN

In this section, we present the design and the key ideas of
Fiesta. We first present the architecture of Fiesta, next explain
how the learning process works in Fiesta, then discuss the
reward mechanisms to encourage participants, followed by a
subsection justifying the necessity of blockchain.

A. Architecture

There are three different roles in Fiesta, as shown in Fig. 1,
individuals with mobile devices, organizations with miners,
and the administrator with seed node(s).

In Fiesta, individuals own the mobile devices, such as
smartphones, with spectrum sensing capabilities. The frontend
of these mobile devices has the capability of sensing the
spectrum at fine granularity over a large set of frequency

administrator owns seed node(s), 
maintaining miner directory, quantifying reward for 
each participants, and coordinating the whole system.

organizations own miners,
performing global model aggregation and ensuring 
storage in consensus.

individuals own mobile devices,
capable of spectrum sensing and performing local 
model training

Fig. 1. Layered architecture of Fiesta.

bands. This sensing capability might probably be part of future
generations of smartphones, depending on the application and
the need of uploading IQ or PSD data. Mobile devices in Fiesta
setup mainly operate in two modes, data collection mode
and learning mode. When in the data collection mode, they
record the spectrum readings and the corresponding meta-data,
i.e. latitude, longitude, and timestamp. When in the learning
mode, they compute the local updated model based on the
current global model and the collected local spectrum data,
then communicate with miners for model aggregation.

Organizations own the miners in Fiesta. Organizations
could be cellular operators implementing an extension of
Minimization of Drive Tests (MDT) measurements, or over-
the-top organizations like Microsoft and Electrosense, who are
interested in spectrum data. Miners will gather a bundle of
updates from mobile devices and batch them into a block, then
calculate the aggregated global model. They also feed the up-
to-date global model with mobile devices. All the versions of
the global model and the corresponding updates from mobile
devices to get the global model are recorded in the form of a
blockchain. The Proof-of-Work (PoW) serves as the consensus
protocol among the miners.

The administrator of the community (e.g. the government
or the regulatory authority like the FCC, 3GPP) owns the
seed node(s) in Fiesta. These seed node(s) have two specific
functions for the blockchain. First, they maintain a directory
of working miners such that new mobile devices and miners
joining the community know where to contact the existing
miners. Second, they periodically scan the blockchain to
quantify rewards for each participant. The administrator, e.g.
FCC and 3GPP, also designs the machine learning models
for spectrum-related applications, specifies which particular
spectrum and spatio-temporal area is of interest, and offers
monetary rewards for participants.

B. Learning process

Fig. 2 illustrates the model learning process in Fiesta, where
red arrows indicate the cycle of federated learning and blue
arrows indicate how a new block comes into birth.

Local training at mobile devices. The main idea is to use
a learning model to describe the spectrum data in accordance
to specific needs of the application. The mobile device starts
training when the device is in charging as long as the user
enables the learning mode in the app and will keep training
whenever there are new global model downloadable from
miner. For example, mobile device will train the pulled global
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Fig. 2. Learning process of Fiesta.

model for one round (a fixed number of epochs) based on local
PSD data (frequency information) and GPS readings (spatial
information) to estimate TV channels’ power at different
locations, as shown in the left box of Fig. 2. Then, the mobile
device uploads that updated model with other information
including device identity, size of training set, and the training
loss local training to any miner for performance monitoring
and reward calculation.

Updates aggregation at miners. As shown in Fig. 2, miners
receive updates, forward to neighbors, batch them into a block,
and compute the new global model. We use a modified version
of FedAvg [15] to deal with asynchronous model aggregation.
FedAvg is the most popular model aggregation method in
the synchronous setting. It computes the weighted average
of the model updates with the weights equal to the number
of data records, and it is guaranteed to converge with non-
iid (independent and identically distributed) data for strongly
convex and smooth problems [13], although slower than the
iid case. Formally, suppose client i ∈ {1, . . . , C} receives the
same copy of the global model wt at the beginning of round
t + 1(t ≥ 0). Then, after local training, all clients (or only a
fraction of all clients selected by the central server) generate
their local update wi

t+1 using their local ni number of data
records. To get the new global model after round t + 1, the
central server in FedAvg computes:

wt+1 =

C∑
i=1

ni
N

wi
t+1, (1)

where N =
∑C

i=1 ni. Finally, this new global model wt+1 is
pushed to all clients for the next round of training.

Challenge of Asynchrony. Compared with ordinary feder-
ated learning, Fiesta needs to handle the challenge of asyn-
chronoy. Due to the heterogeneity of the capability of each
mobile devices, the different amounts of data each mobile
device collects, and the latency and throughput of the wireless
connections during model learning, it is expected to encounter
a variety of speeds per local round of training. Furthermore,
due to the block propagation delay within the miners’ network
and the possible forking of the blockchain, mobile clients

might also download different versions of the global model
at the same time. The challenge of asynchrony is further
exacerbated by the freedom of joining and exiting Fiesta.

EWMA enhanced FedAvg. In the context of synchronous
federated learning, it is expected that blockt+2 contains those
model updates derived from only the global model wt+1

outputted in blockt+1. However, due to above-mentioned asyn-
chronous nature of Fiesta, blockt+2 may also contain model
updates based on the global model wt outputted in blockt,
uploaded by straggling clients. We define these updates in
blockt+2 but based on global model wt as “1 block delayed”.
In reality, the updates may be several blocks delayed instead
of merely one. Due to this impurity of local updates, when
we preform aggregation in blockt+2, we should also take the
global model outputted in previous blocks into consideration.
As a result, we use the exponential weighted moving average
(EWMA) of the global model in Fiesta model aggregation.
Formally, in blockt+1, the miner first aggregates the model
updates within this block same as FedAvg, and gets the
temporary model, say wt+1. Then, the global model will be:

wglobal
t+1 = (1− α)wglobal

t + αwt+1, α ∈ (0, 1). (2)

Note that the round notion in the synchronous setting does
not apply here anymore, we define async round as each time
a new block is generated with a new global model within.
In addition, if miners receive multiple updates from the same
mobile device in an async round (say wi

t−1 and wi
t), they

should only use the most recent one (wi
t) for aggregation so

that too stale updates will be ignored.
A trivial fact is that in synchronous settings, using EWMA is

equivalent to setting a lower learning rate. Yet in asynchronous
settings, it is not equivalent considering each block contains
model updates from different devices. There are also other
ways to penalize staled local updates but EWMA introduces
modification with the least complexity.

Block structure. Fig. 3 shows the structure of a block. The
principle of block structure design is that all parameters that af-
fect global model aggregation should be recorded in the block,
besides standard blockchain required parameters. For example,
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we include the parameters for feature standardization. Local
training related parameters are not included in the blockchain,
e.g. optimizer type and the learning rate.

Mining difficulty and block generation speed. In a
blockchain, blocks are chained by containing the hash of
the previous block and it requires the hash of each block
to contain at least d leading zeros, which is the mining
difficulty (Difficulty here is slight different with the definition
of those cryptos). The mining difficulty also decides the block
generation speed accordingly. It balances a tradeoff between
the first confirmation time (the time taken to generate the
next valid block) and the amount of work wasted due to
blockchain forking. A lower mining difficulty means a higher
block generation speed, which leads to a higher possibility of
blockchain forking and more work wastage but also a shorter
time for first confirmation.

Block verification. Before adding the new block received
from a neighbor to the blockchain and forwarding it to other
neighbors, a miner needs to verify its validity. In addition to
checking the PoW validity and block generation time and size,
which are similar to bitcoin [18], the followings also need to be
verified: a) compatible parameters compared with the previous
block, e.g. difficulties and feature standardization parameters.
b) the new global model is correctly computed based on the
local updates within that block. c) there are no other updates
from the same mobile device within a block.

C. Reward mechanisms

Rewards within a certain time period are calculated by
the administrator based on the information recorded in the
blockchain. Here we only propose a quantification policy. The
exact reward could be monetary or using some other credit
form. We distinguish two types of rewards, one for individuals
and one for organizations.

Individual reward: Previous work on generalized
blockchain and federated learning [8] utilizes a reward
mechanism that is proportional only to the number of data
records each device contributes. However, this approach is
not suitable for spectrum sensing. If the reward is purely
based on the number of data records, this device will tend to
gain more reward without providing much insight into how
this channel is utilized across the area, which is undesirable.
Thus, we decide that the reward of an update for each mobile
device/individual should be proportional to its contribution

in loss function minimization. Suppose a model update from
client i is trained on local data set Di with |Di| = ni, and it
uses blockt’s global model wglobal

t as the initial parameters,
and outputs wi

t+1. Denote the average loss on each data
record as l(w;Di). The individual reward is calculated as
follows:

rit+1 = ni ·
[
l(wglobal

t ;Di)− l(wi
t+1;Di)

]
. (3)

Since we assume the mobile clients report these values
with the model update to the miners faithfully (this could
be enforced by on device trusted execution environment, i.e.
TEE), the individual rewards can be calculated reliably at
seed node(s). In order to gain more rewards with the same
ni, one can enlarge the difference between l(wglobal

t ;Di) and
l(wi

t+1;Di) by measuring the locations that are not captured
by the existing global model rather than visiting the locations
that are already measured.

Organization reward: It is desirable that the reward to
each organization is proportional to the contribution in the
computing power that aggregates updates from mobile devices
and generates the new global model. Therefore, the reward
to each miner/organization is proportional to the number of
blocks generated in the blockchain within the time period,
similar to bitcoin.

D. Motivation of integrating BlockChain

There are actually abundant solutions to decentralizing a
system and enhance its robustness, for example, Paxos [11],
Raft [19], and PBFT [4]. But we still choose blockchain [18]
(proof-of-work, to be exact) as the consensus algorithm for
the following reasons:

Scalability. Conventional consensus algorithm usually has
one or several strong leader nodes, either through designation
or election. It is not a problem when there are only a few
nodes. For example, Google’s distributed lock service and file
system, Chubby [3], is based on Paxos and consists of only
five replicas. However, in the context of crowdsourcing, with
more and more nodes joining into the community, communi-
cation and coordination cost will inflate dramatically and soon
become the bottleneck of those leader nodes’ performance [9].
PoW does not suffer from scalability problem that much since
all that member node needs to preform is checking the hash
value of each block it receives and follows the longest chain
in the community [17].

Security. Node failure is not the only threat for robustness.
Sometimes malicious nodes deteriorate the system in a more
severe way, especially in the context of crowdsourcing where
the community is open to everyone. One of the most common
attack could be Sybil attack [6] where malicious miner injects
overwhelming numbers of forged local updates to gain extra
rewards for this dummy contribution. On one hand this could
be partially prevented through a stricter local updates verifi-
cation. On the other hand, the nature of PoW ensures that no
matter how many malicious nodes one has instantiated (cloud
virtual machine, for example, is a cheap way to do so) or how
many dummy updates one has injected, it is the computation



power that has the impact on final consensus. This mechanism
lower the volume of the attacker dramatically and increases
their cost of collaring illegal rewards.

Alternative consensus mechanism for blockchain. An-
other well-known substitution to PoW is Proof-of-Stake (PoS)
[7], where it is the earned token instead of the computation
power that supports the volume of each node. But PoS
suffers from the nothing-at-stake problem severely [12] and
has not been widely tested. Hence we simply pick PoW in
our implementation at current version.

III. IMPLEMENTATION & DEPLOYMENT

We implement the three roles of Fiesta’s layered architecture
using different hardware and software stack.

Mobile device. A mobile device is connected with an
external sensor board through a USB cable to gain spectrum
sensing ability, which is shown in Fig. 4(a). The sensor board
we use is from [14]. It is equipped with an AD9361 RF
transceiver and a ZYNQ-7020 FPGA chip, featuring strong
spectrum sensing capability ranging from 70MHz to 6GHz
with a 56MHz sampling rate and high programmability. Users
can check the status and interact through an Android app, as
shown in Fig. 4(a). The app will enter the sensing mode when
a sensor board is attached, and will start the machine learning
mode when the mobile device is in charging and under stable
WiFi access. This dual mode design (or lazy training design)
dramatically reduces the impact of our spectrum sensing task
onto the daily usage of host device. In terms of the software
stack, usb-serial-for-android and deeplearning4j are integrated
into the Android app to facilitate serial communication with
the sensor board and on-device machine learning.

Miner. Miners are realized using Flask, a lightweight web
application framework based on Python, and all the communi-
cations between mobile devices and miners use HTTP protocol
for simplicity. An ordinary blockchain node using Proof-of-
Work (PoW) consensus algorithm written in Python consists
of the main body of each miner. Having received several local
weight updates from mobile devices, the miner will integrate
them into a new block and compute the new global model,
for the next async round of training. For our experiments and
deployment, several miner servers are deployed on different
host machines including a 16-core 16 GB RAM personal
desktop and an 8-core 8 GB RAM lab workstation.

Seed node. Seed node is also a Flask server and it uses
HTTP to communicate with other roles as well. The seed node
is backed up with two tables, one noting down the members
registered for Fiesta and the other recording the contribution
and reward for each member. In our design, there are a limited
number of seed nodes and each of them should be reserved for
only the administrator. For our experiments and deployment, a
seed node is running on a 16-core 16 GB RAM desktop with
a public domain name to allow other roles to query the seed
node and register themselves through the Internet.

A. Implementation Challenges
We resolve several issues during implementation to make

Fiesta’s implementation efficient and practical to be deployed.

Local update suppression. When the model converges and
the pattern of the local data is already learned, the mobile
device should not upload the local model to save the network
bandwidth of both the mobile device and the miners as well
as the computing resources at the miners. Given the reward
mechanism we propose, this can be implemented as the mobile
device stops uploading the update if the individual reward
calculated based on local training loss reduction is smaller than
a minimal threshold, i.e. when the local training loss does not
decrease significantly, or the reward is non-positive.

Oversized models. Model size can be large, which makes
block size large. This leads to two drawbacks: a heavy burden
on the network transmission during miner communication, and
a burden on the computation workload to the hash function
when performing PoW. To address the former, we only keep
full information of a block in its born miner and another
archive server (which could be seed node), and share a
streamlined block keeping only necessary components. To
address the latter, we perform a first stage hash over those
local updates from each different mobile devices, and use the
generated fixed-length hash string to further generate the hash
of the whole block when finding the nonce during PoW.

Model structure evolution. The structure of the model
may need to grow more complex to better fit the increasing
number of data records. At this time, seed node(s) will send
out a broadcast message with their signature, which then will
be verified by miners and other seed node(s), such that the
miners start to work on a new blockchain upon receipt of this
message. The genesis block of the new blockchain contains
the new model structure. In order to fully utilize the data
already obtained, there could be a knowledge transfer process
before announcing the new structure, which means the global
model in the genesis block of the new blockchain may not be
randomly initialized.

B. Deployment and Applications

We deploy 10 sensor boards with mobile devices in a
mid-sized US city for 3 months. 3 sensor boards are static
(S1-S3), and the rest are deployed on personal vehicles of
volunteers (M1-M7). Fig. 4(b) shows an antenna mounted on
a vehicle. Due to the frequency constraint of the antennas,
we configure the sensor boards to capture Power Spectrum
Density (PSD) readings of 256 bins from 500MHz to 800MHz
on a 50MHz basis, among which 500-700MHz is primarily for
TV broadcast and 700-800MHz is mainly for LTE usage. PSD
data is collected at the rate of one data record per minute
for each 50MHz band. Fig. 4(c) shows the number of data
records per sensor. Overall, we have gathered more than 220K
data records of 600 hours with significant heterogeneity among
different mobile devices. Fig. 4(d) illustrates the locations of
measurements. It shows the static nodes and the GPS trace of
one mobile node, only for illustration.

We have deployed two different machine learning applica-
tions in real world evaluation to demonstrate the functionality
of our design. Structure of learning models are illustrated in
Fig. 4(e), where digits on each block refers to how many
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Fig. 4. HW/SW suite, real world deployment, and demo tasks of Fiesta.

neurons in a network layer and crossbar between blocks
indicates that it is a fully connected layer.

App1: This application is to learn how the TV spectrum is
used in the spatial domain through a neural network model
predicting the signal power of TV channels at different loca-
tions. The model is a feed-forward neural network with latitude
and longitude as inputs and signal power of TV channels
as output, with mean square error as the loss function. In
the actual implementation, a sin-cos positional encoding is
adopted, inspired by NeRF [16]. In the future, environment
information including weather condition could be fed into the
model as an additional input to enhance model accuracy.

App2: This application is learning how the LTE band is
used in the frequency domain by training an autoencoder [2]
on the PSD data. The autoencoder is basically a neural network
with symmetric structure design and hourglass shape. It takes
the PSD data as input and the output of the autoencoder tries
to reconstruct the input with high fidelity. The reconstruction
result is expected to function as a precursor for detecting
frequency domain anomalies, similar to [21].

IV. EVALUATION AND RESULTS

We first benchmark Fiesta’s performance by simulations
using available spectrum datasets from [24], which contains
TV band PSD data with spatial variations in a city. We also
demonstrate Fiesta’s robustness through node failure and Sybil
attack simulation on the miner side. Simulation framework
and analysis could be find in our code repository under
the directory Fiesta/EdgeSim. In this section we mainly
report the evaluation results of our real-world deployment in a
mid-size US city gathered by 10 mobile devices for 3 months.

A. Real-world evaluation results

We deploy Fiesta onto Android devices with sensor boards,
along with two seed node and three miner nodes for each
App. These devices present a wide variety in terms of their
models (tablets and phones) and mobility status (stationary or
portable), which cover the majority of real-world scenarios.

1) Overhead on mobile devices: Machine learning on mo-
bile devices may be of low efficiency and time-consuming.
Hence, profiling of its overhead is necessary.

CPU and memory. Fiesta Android client occupies less
than 200MB RAM, and 50% CPU utilization on Google Pixel
2 when training two models. On the other hand, in sensing
mode instead of machine learning mode, the CPU utilization

is negligible considering the only workload is receiving data
from the sensing board. Considering Pixel 2 is a device
released 7 years ago, powerful tensor accelerators like Google
G2 in today’s smart phones have the potential to bear the
training task and further reduce the CPU workload.

Network traffic. In order to fetch the global model from
a miner and upload the trained local model to a miner, data
packets sized 220KB for App1 and 1.5MB for App2 will be
exchanged during one local round of training.

Training speed. A local training round (contains 10 epochs)
with a training set with 4k data records takes 1.3 minutes for
App1 and 2 minutes for App2 on Samsung Galaxy Tablet
A 8.0, and slightly faster on Google Pixel 2. The difference
between applications comes from the variance of their neural
network structures. We also observe that one round of training
time is proportional to the size of the local dataset and the
number of epochs.

Energy consumption. Since local training is triggered
only when the device gets plugged with a charger, energy
consumption in machine learning mode is no big issue. For
sensing mode, where the device is linked with a sensor board,
tablets can last for 4 hours and only 2 hours for Google Pixel 2,
because not only the Android device needs to power the board
through OTG, GPS service also drains significant energy. In
this case, battery life can be extended via external powering for
the sensor board and using coarse network location to replace
GPS with a compromise of accuracy.

2) Convergence and learned models of the two applica-
tions: We track the convergence during the whole federated
learning procedure. Unlike an off-the-shelf training set with
a fixed validation set in our microbenchmark simulation, for
the real-world deployment, it is hard to evaluate the trained
model directly, considering the training set itself is gathered
in a streaming manner. As a compromise, we define AppLoss
using the weighted average of training loss (MSE) among local
updates within blockt.

AppLoss =
1∑

i∈blockt
ni

∑
i∈blockt

ni · l(wi
t;Di). (4)

After calculation of the AppLoss for each block, “conver-
gence curves” as functions of date for both apps are shown
in Fig. 8. The convergence curves only visualize a subset of
data points for clarity.

Before week 6, there are only 5 sensor nodes deployed,
including 3 static and 2 mobile. We require each block
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Fig. 6. App1: centralized learnt
TV Ch. 46 power heatmap.
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Fig. 7. App1: ground truth of TV
Ch. 46 power heatmap.
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Fig. 12. Comparison of different reward
policies.

contains 4∼10 local updates. Reduction of both apps’ losses
is observed.

Starting from week 6, five additional sensor nodes are
deployed and the losses got further reduced. With more devices
joining, the asynchronous nature of this bigger system emerges
and leads to inconsistent compositions between blocks, re-
flected as noticeable fluctuations afterward.

A distinct leap occurs for App1 loss after week 8 because
we online upgraded the machine learning model through
transfer learning and the output dimension was increased from
single one to eight causing a higher MSE loss. Detail is
discussed in § IV-A3. Finally, the losses of App1 and App2
converge to 4dB and 5dB respectively.

We are also interested in what those models have learned.
Fig. 5 visualizes the estimated power of TV channel 46
(662-668 MHz). The figure is generated through sampling
App1 model with a resolution of 100×100 within a specific
latitude and longitude range. To intuitively demonstrate that
the model has learnt the geological feature of spectrum usage
successfully, Fig. 7 visualize the raw data (available in kaggle)
we collected from user devices directly. From either heat map
and combining our prior knowledge with the city’s building
distribution, we notice that area with a higher density of high-
rise buildings tends to have lower TV power and vice versa.

We also reconstruct the heat map through traditional cen-
tralized learning instead of federated learning way in Fig. 6,
based on all of the gathered data. A general similarity among
Fig. 5, Fig. 6, and Fig. 7 demonstrates the feasibility of using
distributed federated learning in replacement of centralized
learning or even raw data, while achieving good fidelity. A
mismatch of regional details is also acceptable considering the
raw data itself only covers main streets in the city (Fig. 4(d))
instead of every square feet. As a reference, test loss for App1
in the centralized setup converges to 2.5 dB.

Fig. 9 shows the reconstruction result of a sample without

obvious signals using the autoencoder trained for App2. The
non-flat noise floor of the sensor including a spike around
720MHz is successfully revealed after reconstruction. Fig. 10
shows a signal not fully reconstructed by the model, which
might be a frequency domain outlier and could be used for
further anomaly detection. Other spike due to non-flat noise
floor of the sensor is still successfully reconstructed.

3) Model structure evolution: On week 9, we online up-
grade the structure of the model for App1 to output mul-
tiple TV channels’ power instead of only one. We achieve
knowledge transfer by duplicating the original single output
neuron to initiate other output neurons corresponding to the
multiple TV channels, and keep the hidden layers’ parameter
unchanged in the meantime. The MSE loss increases due to a
larger output dimension. Furthermore, estimating multiple TV
channels’ power is intrinsically more challenging compared
with a single one. Fig. 8 shows the ease of use of Fiesta when
one needs to modify the machine learning model structure.

4) Effectiveness of the mechanism to deal with oversized
models: Machine learning models with thousands or even
millions of parameters will be a huge burden for the network
and local storage. Fig. 11 shows our block compression policy
with respect to the number of local updates within a block.
Considering we replace the giant Python dictionary of each
local weight with a much smaller unit (§ III-A), the more local
updates a block contains, the more storage we could save.

We also show the CDF of the number of local updates
within a block. We notice that due to the relatively small
mining difficulty, most blocks contain only 4 local updates,
the minimal number we set. The max number of local updates
a block includes is 8. App1 blocks contain more local updates
than App2 blocks. It is reasonable considering the machine
learning model of App2 contains much more parameters than
that of App1, hence requiring a longer time for local training.
More swiftly the local training completes, more local updates



can be included in one block given the mining difficulty.
5) Reward mechanisms: As mentioned in § II-C, the reward

mechanism previous work [8] adopts fails to reflect the actual
contribution of each member. To demonstrate the effectiveness
of our proposed reward mechanism shown in formula 3, we
compare it with the naive size-based reward mechanism as the
baseline, in Fig. 12, using 4 representative devices, including
two stationary and two mobile. All the reward values are
normalized by the maximum.

Stationary device 1 performs local training on a large but
roughly geographically homogeneous dataset considering it is
deployed in a stationary environment. On the contrary, mobile
device 1 and 2 have relatively smaller but more heterogeneous
data because they are deployed on moving vehicles. From
Fig. 12, we observe that the baseline mechanism grants higher
rewards of the stationary device regardless to the little infor-
mation within, while the proposed mechanism values the data
diversity significantly. The difference is more distinct when it
comes to App1, which tries to learn the spatial distribution
of TV channels’ power. Stationary device 2, though having
more data points than mobile devices, but performs few local
training and uploading, hence little reward earned.

V. CONCLUSION

A major pitfall of previous spectrum crowdsensing efforts
is the lack of awareness of sustainability. We have presented
Fiesta, a sustainable framework for spectrum crowdsensing
based on a three-tier architecture. On the technical side,
Fiesta addresses two deficiencies of prior spectrum sensing
architectures: privacy concerns that require participants to
upload sensitive information and a single point of failure due
to centralized analysis, through a combination of federated
learning and blockchain. On the policy side, we have pro-
posed a fair reward quantification mechanism for participants
and discussed potential funding sources to ensure long-term
sustainability. We also release the code and dataset used in
this paper to welcome further contributions and wider adoption
from the community to realize Fiesta’s long-term vision.
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