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Abstract—Next-generation mobile networks will increasingly
rely on the ability to forecast traffic patterns for resource
management. Usually, this translates into forecasting diverse
objectives like traffic load, bandwidth, or channel spectrum
utilization, measured over time. Among the other techniques,
Long-Short Term Memory (LSTM) proved very successful for
this task. Unfortunately, the inherent complexity of these models
makes them hard to interpret and, thus, hampers their deployment
in production networks. To make the problem worsen, EXplainable
Artificial Intelligence (XAI) techniques, which are primarily
conceived for computer vision and natural language processing,
fail to provide useful insights: they are blind to the temporal
characteristics of the input and only work well with highly rich
semantic data like images or text. In this paper, we take the
research on XAI for time series forecasting one step further
proposing AICHRONOLENS, a new tool that links legacy XAI
explanations with the temporal properties of the input. In such
a way, AICHRONOLENS makes it possible to dive deep into the
model behavior and spot, among other aspects, the hidden cause
of errors. Extensive evaluations with real-world mobile traffic
traces pinpoint model behaviors that would not be possible to
spot otherwise and model performance can increase by 32%.

I. INTRODUCTION

The advent of fifth-generation (5G) mobile networks has
considerably changed the landscape of the mobile network
ecosystem. The growing availability for higher and faster access
to mobile services has contributed to increase the demand for
mobile traffic which is growing at a staggering pace and is
expected to reach 329 EB/month in 2028 [1]. By the end of
2023, the worldwide average monthly smartphone usage is
expected to surpass 20 GB/month.

The capability to analyze and forecast mobile traffic volumes
at the individual level of single Base Station (BS) or at the city
scale has become key for operators to properly perform resource
management. Traffic forecasting makes diverse optimizations
possible, such as network deployment planning [2], routing [3],
and mobility management [4], resource allocation [5] and
network slicing [6], and to reduce the energy consumption
footprint [7]. In the context of individual BSs, forecasting traffic
volumes has found applicability in anomaly event detection [8],
scalable scheduling of pilot signals to improve the quality
of channel estimation [9], uplink single-user throughput [10],
grant scheduling [11] or buffer status reports [12], and to infer
Physical Resource Block (PRB) utilization [13]. Although
several techniques have been utilized for forecasting like
Deep Reinforcement Learning (DRL) [14] or simply Gaussian
Processes [13], LSTM are by far the most popular technique

for individual time series forecasting [8], [9], [10], [12], often
outperforming other methods [15].

The logic governing LSTM is not easily understandable by
humans, which creates an inherent lack of explainability of the
models and hampers their use in production networks. Indeed,
without a proper understanding of the logic governing LSTM
models, network managers are understandably reluctant to
blindly trust their output. Moreover, network engineers remain
skeptical of the opaque internal operation of LSTMs that make
tasks like troubleshooting daunting and that create new surfaces
for adversarial attacks [16]: indeed, it has been shown how
perturbations to the original input (e.g., added load or jamming)
can be crafted to be imperceptible to humans, but sufficient to
worsen the accuracy of a predictor [17]. These examples show
how LSTM explainability is mandatory if those models are to
be deployed in production-grade networks. As an interesting
counterexample, decision trees [18] have been used in practical
scenarios by AT&T for automatic parameter configuration of
newly deployed BSs [19]: as explained by the authors of that
study, a key element that allowed those models to gain the trust
of the operator was their inherent interpretability. Unfortunately,
decision trees operate on discrete output variables and are thus
very cumbersome to use for mobile traffic forecasting.

In this context, the fundamental objective of EXplainable
Artificial Intelligence (XAI) is precisely to provide logical
and human-understandable explanations for the black-box
behavior of neural networks like LSTMs. Historically, XAI
techniques have been conceived and tailored for computer
vision and Natural Language Processing (NLP), and not for
time series [20]. This is mainly attributed to data characteristics
(high-dimensional data like images and video are more intuitive
to be explained than time series for which pattern identification
is more complex) and the surge of interest for computer
vision-based applications (medical imagining or security built
on object detection and recognition, and are very popular
which has drawn the attention for embedding interpretations;
in contrast, mobile traffic forecasting is not as popular).
Prominent XAI techniques like LayeR-wise backPropagation
(LRP) [21], SHapely Additive exPlanations (SHAP) [22],
Local Interpretable Model-agnostic Explanations (LIME) [23],
DeepLIFT [24] have been adapted for time series. However, as
we show in Section II, they fail to provide useful explanations
from a fundamental perspective that goes beyond the simple
understanding of input relevance. For example, they are not
capable to reveal the hidden causes of model errors that are



specific to both (i) the model’s inner logic, and (ii) the currently
observed input.

In this paper, we tackle precisely the problem of enhancing
the quality of explanations in the context of time series
forecasting for mobile networks. Our far-reaching objective is
to lower the barrier for LSTM adoption in production networks.
For this, we propose and design AICHRONOLENS, a new tool
that addresses the main shortcomings of legacy XAI techniques
and provide means to better comprehend LSTM models in
action. In essence, AICHRONOLENS resolves the ambiguity
of legacy XAI techniques in assigning the same relevance
scores to highly diverse input sequences by exploring the
Pearson correlation between relevance scores and an enriched
expressiveness of the input sequence. We do so by applying an
imaging technique called Gramian Angular Field (GAF) [25]
that turns an input time series sequence into a 2D representation,
making it possible to capture pairwise relationships like
local maxima/minima within the input sequence and their
spatial distance. Positive or negative correlations between
relevance scores and the GAF imply that higher or lower
importance is given to relevant samples like local maxima or
minima. AICHRONOLENS exploits such added expressiveness
to characterize the model behavior. AICHRONOLENS should
be used offline for model inspection to synthesize tailored
explanations on model behavior that can be next used at online
inference times for monitoring purposes.

We perform an extensive evaluation of the strengths of
AICHRONOLENS with real-world mobile traffic data for two
relevant use cases, i.e., forecasting of traffic load and the
number of connected users to a BS. For the former, we use a
measurement dataset collected in a production 4G network serv-
ing a major metropolitan region in Europe with minute-level
traffic information. For the latter, we use a measurement
dataset collected at production BSs with millisecond-level
traffic information. We demonstrate that AICHRONOLENS
spots model behaviors that cannot be identified otherwise.

The key contributions (“C”) and findings (“F”) of our study
are summarized as follows:
C1. We design AICHRONOLENS, a new tool that addresses

the inherent shortcomings of prominent XAI tools when
applied to Artificial Intelligence (AI) models for time
series forecasting by harnessing liner relationship between
relevance scores of XAI tools and temporal characteristics
of the input sequences.

C2. We perform an extensive evaluation of AICHRONOLENS
with real-world datasets and several LSTM models to
demonstrate that it provides highly detailed explanations
regarding model behavior that are useful at the time of
verifying model robustness and monitoring.

C3. For the sake of reproducibility and to further stimulate
the research in the field, we release the artifacts of
our study (the trained LSTM models and the code of
AICHRONOLENS) at: https://git2.networks.imdea.org/wn
g/aichronolens.

F1. We find that, unlike legacy XAI tools, AICHRONOLENS is
capable to pinpoint differences in hyperparameter settings

at training times of different models applied to the same
test data. For example, higher learning rates translate into
stronger correlations between the relevance scores and the
time series inputs while lower learning rates exhibit weak
or non-linear correlation.

F2. We find that the correlation coefficients obtained as
outcomes of AICHRONOLENS show geometrical properties
that can be related with the model errors. Further, we show
the root causes of this issue, i.e., poor model design or
data inherently hard to predict.

F3. We find that AICHRONOLENS can be used to refine the
training and thereby improve model performance.

II. BACKGROUND AND MOTIVATION

A. Background

Time Series Forecasting: Problem Formulation. The objec-
tive of Machine Learning (ML) models that tackle the problem
of time series traffic forecasting like LSTM is to predict the
future value at time t+ 1, having observed a sequence of past
values. Values can be traffic volumes, number of users or PRBs
measured over time. Formally, let XT = {x1, x2, . . . , xT }
be the whole sequence of values at time t = {1, 2, . . . , T}.
Let Xt be the set of historical n past values at time t:
Xt = {xt−n+1, xt−n+2, . . . , xt}. n is known as history or
input sequence, with n ≪ T . Then, the forecast x̂t+1 at time
t+ 1 is:

x̂t+1 = F (Xt). (1)
F is a generic prediction function and the ML model design
phase is all about defining a proper F for the problem under
analysis. F is trained by evaluating at each iteration a loss
function Zθ(xt+1, x̂t+1) and updating the parameters θ (e.g.,
the weights) to fulfill a specific objective, e.g., minimizing the
Mean Absolute Error (MAE) or Mean Square Error (MSE).
Primer on XAI. Promoting trustworthiness in AI has ex-
perienced a surge of interest over the last few years [26],
[27], also in the context of mobile networks [28], [29]. While
interpretability focuses on contextualizing the model outputs
about its design, explainability goes beyond and provides
customized knowledge that describes how and why a model
comes to achieve a given output [30]. Intrinsic or transparent
XAI techniques foster interpretability, while post-hoc XAI
techniques apply after training and concern explainability [31].
AICHRONOLENS synthesizes post-hoc explanations.
XAI for Time Series. Although XAI was conceived and
tailored for computer vision and NLP, there exists some
applicability to time series [20], especially in the context
of time series classification [32], [33]. The techniques that
apply to forecasting are often tailored to multi-variate time
series [34]. Many mobile network problems instead require
tools for univariate time series, which we present next.
XAI Techniques. There exists model-agnostic and model-
specific techniques. SHAP [22], LIME [23] and Eli5 [35]
belong to the first category and provide explanations by
perturbing the inputs of the models to determine how relevant
the features are for the prediction. These techniques differ in the



way they compute the relevance scores. Conversely, LRP [21]
is model-specific. LRP provides explanations by evaluating
which neurons are relevant to a prediction given the input data,
making it thus possible to highlight which part of the input
data influences the prediction the most.

We now provide the reader with the necessary background
on the XAI techniques used in the rest of the paper:
• LRP assigns a score to all the inputs of a predictor and this
score indicates the extent of their contribution to the predictor.
The relevance scores are computed by tracking back from the
output the individual activation of each neuron and its weight
in subsequent layers of the model. LRP follows a conservation
principle for which the total amount of relevance distributed in
layer p remains unaltered in layer q. When the backpropagation
reaches the input layer, the relevance score is distributed to
the input sequence.
• SHAP provides feature-based explanations by approximating
the Shapley values of a prediction. These are obtained by
examining the effect of removing one feature at a time under
the combination of the presence/absence of all other features.
SHAP generates global and local explanations in the form of
log-odds, which can be turned into a probability distribution
with the softmax operation.

LRP appears to be more suitable for the specific case of
time series prediction, as it provides high quality fidelity in the
explanations vis-a-vis the SHAP and LIME counterparts [36].
Nevertheless, for the sake of completeness, we will use both
LRP and SHAP.

B. Motivation

We now elaborate on the need for AICHRONOLENS by
showing the limitations of LRP and SHAP techniques. For
the specific problem of time series classification, a recent
work [37] shows that different methods lead to different post-
hoc explanations for the same model on the same dataset. In
this work, we go further and show that when applied to uni-
variate time series the same XAI method provides ambiguous
explanations with no relation to the input sequence.

For this purpose, we train a model composed of an LSTM
layer with 200 neurons followed by a fully connected output
layer with a single hidden unit. The model applies to a dataset
that contains traffic volumes from a production network with
a 3 minute granularity where 28 541 samples are used for
training and 7 121 for testing. §IV-A provides more details
on the datasets and all the other models trained for validation
purposes from which we derived the model currently under
consideration. We apply both LRP and SHAP on the test set.
Fig. 1 portrays an example of an input sequence of 20 samples,
the forecast and the LRP scores. Next, we perform an extensive
clustering analysis utilizing Dynamic Time Warping (DTW)
Barycenter Averaging (DBA) [38] and Soft-DTW [39] k-means.
For each technique, we run DBA and Soft-DTW for several
cluster sizes (i.e., κ = [3 : 10]) and compute the silhouette
score to identify the optimal number of clusters [40]. Fig. 2
portrays an example of the obtained results for LRP where the
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Fig. 1. Example of LRP scores for an input sequence of traffic load

optimal number of clusters is κ = 4 for both DBA and Soft-
DTW. It takes nearly 16 hours to execute on an Intel® Core™
i9-11900K processor operating at 3.5 GHz and equipped with
an Nvidia RTX 3090 GPU. On the top of the figure, we
show the LRP scores and, on the bottom, the corresponding
input sequence that produced a prediction explained by the
generated scores. From Fig. 2 we observe that, for each cluster,
there is no unique relationship that bonds the LRP scores
with input sequences. We verify that the same behavior holds
for SHAP too. The lack of such a relationship suggests that
the XAI techniques are either not effectively capturing the
salient characteristic of the model or that the model itself is
not adequate for the job.

III. AICHRONOLENS

In light of the motivation presented in Section II-B, this
Section presents AICHRONOLENS, a new technique that
enhances the depth of explanations of legacy explainability
tools. We first delve into its design principles (Section III-A)
and next present its architectural design (Section III-B).

A. Overview and Design Principles

Fig. 3 outlines the high-level design of AICHRONOLENS. In
a nutshell, AICHRONOLENS extracts through XAI techniques
like SHAP or LRP relevance score (Ln) that defines the
contribution of each element of the input sequence Xt to
the forecast x̂t+1 (module ❶ in the figure). To resolve the
ambiguity highlighted in §II-B, AICHRONOLENS uses an
imaging technique, the GAF, on Xt to reveal patterns within
the input sequence (module ❷). Next, AICHRONOLENS probes
for linear correlation between with the Pearson’s coefficient
between the relevance scores Ln and the GAF representation
Gn×n (❸ in the figure). We specifically probe for linear
correlation to understand whether the model provides higher
or lower importance to relevant samples in the input sequence
like local maxima or minima. Finally, the “Analyzer” module
monitors when this relation holds true (alignment between
relevance scores and input sequences as series of correlation
vectors Rn) or not and exploits transitions between the
two cases as base information to synthesize more profound
explanations (❹ in the figure).

We design AICHRONOLENS with the following design
principles (DP) in mind:
• DP1: XAI Generality. We allow for any of the existing
XAI tools to be plugged into AICHRONOLENS, which makes
AICHRONOLENS highly general. At the same time, this allows
to compare the explanations that the different XAI tools provide
when applied to the same trained LSTM model on the same
dataset.
• DP2: LSTM Specificity. While being general regarding to
the pluggable XAI techniques, in this paper we restrain the
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Fig. 2. Main shortcoming of prominent XAI methods: explanation profiles can originate from highly diverse input sequences
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Fig. 3. AICHRONOLENS architecture

scope of action to LSTM models. We leave to future work
the adaptation of AICHRONOLENS for models dealing with
spatio-temporal inputs.

B. AICHRONOLENS Design

As introduced above, AICHRONOLENS consists of four
main modules: module ❶ exploits an XAI technique for each
prediction, module ❷ applies the GAF operation, module ❸
computes the Pearson’s correlation coefficient on both relevance
scores and GAF matrix, and module ❹ synthesizes explanations
from the obtained correlation coefficients.
Relevance Scores from XAI (❶). In computer vision, XAI
techniques indicate the relevance of each pixel of an image at
each point in time t. In analogy, by taking into account that
each prediction x̂t+1 depends on the past, or input sequence
Xt, then XAI techniques provide relevance scores Ln to each
element of the the input sequence xi ∈ Xt, ∀i = 1, 2, . . . , n.

According to DP1, we now show how to obtain the
relevance scores Ln by considering the two most prominent
XAI techniques for each category of methods, i.e., LRP
(backpropagation) and SHAP (perturbation).
• LRP computes the relevance scores Ln by tracking back
from the output the individual activation ai of each neuron i

and its contribution to neuron j with weight wi,j in subsequent
layers of the Neural Networks (NN) p and q. Formally:

L
(q)
i←j = L

(p)
j

∑
i,j

ai · wi,j∑
k ak · wk,j

. (2)

Following a conservation principle for which the total amount
of relevance distributed in layer p remains unaltered in layer
q, when the backpropagation reaches the input layer, LRP
distributes the total relevance to the input, i.e., Xt in our case.

• SHAP computes relevance scores by determining the average
contribution of each element of the input sequence across all
possible permutations of the elements’ values. To do so, SHAP
relies on Shapely values. Formally ∀i = 1, 2, . . . , n, li ∈ Ln

is computed as:

li(f) =
1

(n− 1)!

n−1∑
k=1

∑
Xs⊆Xt

|s|=k

[(
n− 1

k

)]−1
·

· (f(Xt)− f(Xs)) ,

(3)

where s = n − 1 is a subset of the n features of the input
sequence Xt, f(Xs) is the model prediction with Xs, where
Xs = Xt xi}, and f(Xt) is the prediction with all the features,
i.e., x̂t+1.

Imaging via GAF (❷). Given the inherent ability of ML
in dealing with images, there exists several attempts of
transforming time series into images [41]. Recurrence Plots
(RP), GAF, and Markov Transition Field (MTF) are popular
imaging techniques for time series [25]. In a nutshell, all
of them turn a time series of length m into an image of
m×m pixels. The difference between these techniques lies
in how they define the image. RP compute the Euclidean
distance for each value j ∈ m of the time series. RP are
not capable to deal with time series of variable length and
different scales, and can not effectively represent upward and
downward trends [42]. GAF represents a time series using
polar rather than Cartesian coordinates by constructing a Gram
matrix where each element is the cosine of the sum of 2 angles.



Finally, MTF constructs a Markov matrix of quantile bins on
the time series values and encodes into a quasi-Gramian matrix
the dynamic transition probability of each element j ∈ m.
Although the MTF technique preserves temporal dependencies
like GAF, it does not allow reconstructing the original time
series as GAF does. The difference lies in the fact that GAF
operates on time series values directly, while MTF operates
on transition probabilities of quantiles. Hence, we use GAF
for AICHRONOLENS.

To obtain a GAF, the original elements of time series
xi ∈ Xt, with i = 1, . . . , n, undergo a set of transformations.
First, we rescale them in the range [−1, 1]:

x̃i =
(xi −max(Xt)) + (xi −min(Xt))

(max(Xt)−min(Xt))
. (4)

Next, we represent X̃n in polar coordinates by encoding the
value as the angular cosine and the time step as the radius:ϕ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃;

r =
i

Y
, i ∈ N.

(5)

In this equation, Y is a factor that regularizes the span of the
system of polar coordinates. With time increase, the values of
the time series shift between angular positions, while the radius
increases at a steady rate. This method of visualizing the time
series brings two important properties. First, it is bijective, as
cos(ϕ) is monotonic when ϕ ∈ [0, π] which makes it possible
to recover the original time series. Second, it preserves absolute
temporal relations, since, as opposed to Cartesian coordinates,
the corresponding area from time step i to j does not only
depends on |i− j|, but it also depends on the absolute values
of the time series in the time steps i and j. Armed with such
representation, we can define the GAF as Gn×n for each
t ∈ T :

Gn×n =


cos(ϕ1 + ϕ1) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) · · · cos(ϕ2 + ϕn)

...
. . .

...
cos(ϕn + ϕ1) · · · cos(ϕn + ϕn)

 . (6)

By defining the inner product as follows:

⟨v, z⟩ = v · z −
√
1− v2 ·

√
1− z2. (7)

Gn×n, that is a Gram matrix [43], can be rewritten as:

Gn×n =


⟨x̃1, x̃1⟩ · · · ⟨x̃1, x̃n⟩
⟨x̃2, x̃1⟩ · · · ⟨x̃2, x̃n⟩

...
. . .

...
⟨x̃n, x̃1⟩ · · · ⟨x̃n, x̃n⟩

 . (8)

A Gram matrix [43] of a set of vectors v1, ...,vn in an inner
product space is the Hermitian matrix of the inner product
(a matrix B is Hermitian if and only if each element fulfills
bij = bji, that is, the matrix is equal to its own conjugate
transpose). The GAF representation provides several features.
First, it preserves temporal dependency, because the time
increases as we move from top left to bottom right. It contains
temporal correlations, since G(i,j||i−j|=t) corresponds to the
relative correlations of the directions that lie in the time step t.
The main diagonal of Gn×n is a special case containing the

original time series values. In a GAF, high values (close to 1)
are those where local maxima or minima in the original time
series correlates either with themselves or other maxima or
minima respectively. The values close to 0 are the result of a
correlation between local maxima or minima with points of
intermediate values in the original time series. Finally, negative
values (close to −1) originate from the correlation between a
point with local maxima or minima with another point in the
original time series with a local minima or maxima respectively.
Defining Correlations (❸). Armed with relevance scores Ln

and Gn×n, we seek correlation between these two quantities.
In essence, we aim to understand if there is a linear relation
between the relevance scores (i.e., Ln) and elements of the
input time series (i.e., Gn×n). Specifically, by construction,
each row of Gn×n characterizes inner relationships between
samples of the input time series. Denote the ith row of this
matrix as Gi, a 1×n vector defined in (8). Given that also Ln

is a 1× n vector, we can compute the Pearson’s correlation
coefficient between these two quantities. Specifically:

Rn =
cov(G,L)

σGσL
=


ρ0
ρ1
...
ρn

 . (9)

where σ· is the standard deviation and cov(·, ·) is the covariance.
To simplify the notation, call ρi the correlation vector between
Gi and Ln. By repeating the process for each timestep
t = 1, . . . , T , we obtain a correlation matrix C with dimensions
n× T where Rn is only one column:

C =


ρ1,1 ρ1,2 . . . ρ1,T
ρ2,1 ρ2,2 . . . ρ2,T

...
...

. . .
...

ρn,1 ρn,2 . . . ρn,T


n×T

. (10)

Analyzing Correlations (❹). At the heart of AICHRONOLENS,
the “Analyzer” module exploits C to synthesize explanations.
For the sake of illustration, let us consider the case of observing
W = 3 timesteps (i.e., t, t+1, and t+2) of correlation vectors
with a history of n = 6 samples. With the increase in time, a
correlation coefficient ages and vanishes once the presence in
the history of the sample of the time series that contributed to
its generation is over. To observe the evolution of the Pearson’s
coefficients of each sample over time, we create a new matrix
S by storing all the secondary diagonals of length T in rows:

C6×3 =




ρ1,1 ρ1,2 ρ1,3
ρ2,1 ρ2,2 ρ2,3
ρ3,1 ρ3,2 ρ3,3
ρ4,1 ρ4,2 ρ4,3
ρ5,1 ρ5,2 ρ5,3
ρ6,1 ρ6,2 ρ6,3
t t+ 1 t+ 2

,S4×3 =


ρ3,1 ρ2,2 ρ1,3
ρ4,1 ρ3,2 ρ2,3
ρ5,1 ρ4,2 ρ3,3
ρ6,1 ρ5,2 ρ4,3

 .

(11)
For practical use, ST is more convenient than S.

All the explanations of AICHRONOLENS rely on the analysis
of C or ST over windows w ≤ T . In w, depending on their
value, either positive or negative, the correlation values generate



TABLE I
CONFIGURATION OF THE MODELS TRAINED FOR D1

MODEL ID NEURONS LEARNING RATE MAE

A 200 0.0001 0.96
B 100 0.0001 0.99
C 50 0.0001 1.09

A_A 200 0.001 0.67
B_B 100 0.001 0.68
C_C 50 0.001 0.95

triangle shapes. For instance, from left to right, bottom to top:
ρ6,1, ρ6,2, ρ6,3, ρ5,2, ρ5,3, and ρ4,3 would form a triangle
of negative correlation if all the coefficients are in the range
[−1, 0]. A triangle represents the trend of the prediction given
the time series input. We are interested in how these triangles
transition one to another: smooth and non-smooth transitions
indicate respectively that the model catches well changes or not
the trend. Errors usually occurs in the presence of non-smooth
transitions.

To summarize, AICHRONOLENS links relevance scores with
temporal characteristics of the input sequences in a unique
manner. The output of the tool are correlation coefficients that,
if observed over time, generate patterns (series of triangles of
positive or negative values) that can be geometrically interpreted
and spot different causes of errors. In §IV we will show
two techniques for pattern recognition that uniquely identifies
different causes of errors.

IV. DISTILLING EXPLANATIONS WITH AICHRONOLENS

In this Section, we first describe the datasets and models used
to validate AICHRONOLENS (§IV-A). Next, we empirically
evaluate AICHRONOLENS’s explanations, showing the cause
of model errors and to optimize model performance (§IV-B).

A. Dataset and Models

Datasets. For our validation, we rely on two different datasets:
• D1: The first dataset contains measurements of traffic vol-
umes recorded in a production 4G network that serves a
large metropolitan region in Europe. The dataset provides fine-
grained information at 3 minute granularity about the traffic
volumes at each BS. The dataset covers 3 months.
• D2: The second dataset contains the estimated number of
active users currently connected to a production BS [44].
The dataset has been recorded using a popular LTE passive
monitoring tool that decodes unencrypted information that the
BSs exchange with the associated users. The dataset contains
information at millisecond level about the temporary user ID
currently associated with the user, i.e., the Radio Network
Temporary Identifier (RNTI), and scheduling information. We
use the methodology proposed in [45] to estimate the number
of active users every 6 minutes.
LSTM Models. Our objective is to highlight the benefits
of AICHRONOLENS under different perspectives. Hence, we
train different LSTM models for the two datasets. The two
models share the same LSTM architectural design, with
one unidirectional LSTM layer followed by an output layer
configured with one neuron and a linear activation function for

one-step prediction. Both use a sequence of past 20 samples to
predict the next one, and are trained with Adam optimizer using
MAE as loss function. Specifically, for D1, we train 6 different
models by intentionally varying the number of neurons in the
LSTM and the learning rate; we also introduce regularization
by randomly discarding some neurons at each iteration using a
dropout layer before the output. Table I summarizes the details
of the D1 models. They allow analyzing how AICHRONOLENS
captures variations in the hyperparameters. In contrast, for D2,
we train a single optimized model based on extensive prior
testing. The LSTM layer features 25 neurons with a tanh
activation function. Finally, we use standard 80:20 train-test
split ratios.

B. Explanations and Optimizing Model Development

In this subsection, we showcase the breadth of the expla-
nations generated by AICHRONOLENS, across all the models
trained for D1 and D2. Our main results are explanations that
go beyond the simple attribution of relevance scores to the
input sequence. In summary, our results, derived from the
quantitative analysis performed on the test set of both datasets
are the following:
• R1: In cases where LRP and SHAP produce relevance scores
that are very similar over time and thus not informative, the
correlation vectors that are the output of AICHRONOLENS
clearly pinpoint the temporal characteristics that stimulate the
model. These are samples entering or leaving in the input
sequence whose values are either local maxima and local
minima or very close to the local maxima or minima. The
absence of such samples entering or leaving the input sequence
turns strong positive or negative correlation values into weak
correlation values. The observed behavior holds true in general
(i.e., in the analyzed test sets of both datasets).
• R2: AICHRONOLENS can spot errors that are due to poor
model design and errors that are specific to data inherently
hard to predict. The different types of errors can be spotted by
analyzing the shape of the correlation matrix C.
• R3: Higher learning rates (i.e., models A_A, B_B, and C_C)
produce weaker correlations with respect to models featuring
smaller learning rates (i.e., A, B, C). This behavior occurs
regardless of the number of neurons.
Finding R1. Fig. 4 demonstrates qualitatively R1. In the
figure, we show in a combined fashion from top to bottom
the input sequence (e.g., timesteps), the output of the XAI
techniques (SHAP in this case), the GAF of the corresponding
input sequence, and, finally, the correlation vectors. While
the SHAP scores are highly similar, the correlation vectors
vary considerably. Specifically, we can appreciate in window
20 (used to predict timestep 21) almost no correlation at all.
This is due to the fact that SHAP assigns high relevance to
samples in the input sequence closest in time to the next
prediction (see history 15 − 19 in the bottom) while these
samples are not particularly relevant from the input sequence
perspective (the GAF highlights the corresponding values with
dark colors). In contrast, in timestep 22 a new local minimum
enters: the alignment between SHAP and GAF triggers a
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Fig. 4. A detailed look at AICHRONOLENS. Red squares and blue dots
represent the local maxima and local minima respectively.

significant modification to the correlation vector if compared
with the correlation vector of the previous timesteps. In contrast,
if left alone, SHAP would not capture such a change. We will
see next why being blind to such changes is detrimental to
model performance.
Finding R2. We prove quantitatively that AICHRONOLENS
can detect different categories “E” of errors:
• E1: is attributed to poor model design (shown for D1),
• E2: is specific to the dataset when using an optimized model
(shown for D2).
Analysis of E1. Next, we will show that by tracing the root
cause of the errors, it is possible to identify weaknesses due to
poor model design that are not captured by coarse evaluation
metrics like MAE or MSE. Finally, we will show that an
informed model re-design can address such a shortcoming.

We perform a complete analysis over the AICHRONOLENS
output C computed on the test set for all the trained models
with both SHAP and LRP techniques. We observe that in the
presence of trend changes in the time series, correlation vectors
exhibit triangles with negative correlation followed by triangles
with positive correlation. We find that the shape of the triangles
varies. Well-formed, sharply outlined triangles like those in
Fig. 5(a) (top) indicate that in the corresponding part of the
time series, the model does not make significant mistakes (see
Fig. 5(a) (bottom)). We define these triangles as sharp. In
contrast, noisy non-sharp triangles like that of Fig. 5(b) (top)
lead to high errors (see Fig. 5(b) (bottom)) in the presence of
abrupt falls where the model is not able to accurately predict
when the decrease stops in the actual data. This behavior is
systematically observed throughout all the decreasing slopes
present in the test set.

We now show a pattern recognition technique that identifies
sharp and non-sharp triangles. Numerically, we identify the
transition between triangles by computing the difference of the
median correlation scores between two consecutive correlation
vectors Gt and Gt+1 in timesteps t and t+ 1. Upon finding
the column that interrupts the triangle, we set a window w of
observation centered in such column. For example, W = 6
indicates that we observe 3 preceding and succeeding columns
forming a matrix Cn×w. To spot sharpness, we perform the
following operation on each element ci,j the matrix:

ci,j =

{
−1 if − 0.9 ≤ ci,j ≤ 0

1 if 0 ≤ ci,j ≤ 0.9.
(12)

On the resulting Cn×w, we compute the number h of positive
and negative values per each secondary diagonal of length w
and store it into an array. By construction values of h are in
the range [−w : w]. Next, we compute a sharpness score σ on
the resulting array as follows:

σ = 1−
∑n−(w−1)

i=1 hi

|hi| · (w + 1)
. (13)

For 0 < σ < 1, the higher the value of σ, the higher the degree
of non-sharpness. For −1 < σ < 0, the lower the value of σ,
the higher the degree of sharpness. By relating the sharpness
score and the error only in the presence of sever load decrease,
we observe that as the sharpness score increases, the error does
too (see Fig. 6(a)). By taking a close look to the errors in
the entire test set (see Fig. 6(b)), we observe that the highest
absolute errors (5-8 GB/min) occur in the correspondence of
moderate to low loads that are all connected with abrupt falls.
Fig. 6(c) reveals that the model underestimates significantly the
ground truth in the presence of severe load decrease (bottom-
left in the plot). A careful analysis of the train set reveals
a lack of training samples exactly in the proximity of traffic
volumes for which the model is often mistaken (see Fig. 6(d)).

Ultimately, AICHRONOLENS allows appreciating that the
model does not generalize in the presence of abrupt load
decrease, as it has not observed such trends in the training
set. In this way, our tool points to the solution to the model
shortcoming, i.e., data augmentation. Specifically, we copy
from the train set a number of samples that represent 3 days
(overall the train set was about 8 weeks) and append it to the
end of the train set. Next, in the presence of falls, we carefully
remove samples with the objective of including those abrupt
load decrease that were missing. We then train a new model,
starting from model A_A settings, with the augmented training
dataset. The new model differentiates from A_A only by the
presence of a sigmoid activation function before the output
layer. Fig. 7 outlines that the new optimized model outperforms
the baseline model A_A by reducing not only the tails (errors
of high magnitude - errors are computed as xt+1 − x̂t+1 -,
which is especially clear on the right inside of the plot for
underestimation errors), but also the frequency of errors with
small magnitude and that the error bell is centered around zero.
These are all indicators of the poor training process of model
A_A vis-a-vis the optimized counterpart. Overall, by only
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Fig. 5. Relating triangle sharpness of AICHRONOLENS output C with model errors

0.0 0.2 0.4 0.6 0.8 1.0

4

6

8

Sharpness Score

E
rr

or
(G

B
/m

in
)

(a) Linking errors and sharpness score

0 20 40 60 80
−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0

Load (GB/min)

E
rr

or
(G

B
)

(b) Errors as a function of load

−10 −5 0 5 10
−10

−5

0

5

10

Pairwise load difference (GB)

E
rr

or
(G

B
/m

in
)

(c) Errors as a function of load changes

0 16 34 51 68 86
0

2000

4000

6000

8000
18.4%

7.4%

4.
2%

3.
6% 6.1%

16.6%

23.1%

13.8%

6.0%

0.6%

Traffic Values (GB/min)

Fr
eq

ue
nc

y

(d) Train set
Fig. 6. Root cause analysis of model errors

−4 −3 −2 −1 0 1 2 3 4
0

100

200

Error (GB/min)

Fr
eq

ue
nc

y

Model A_A Optimized model

Fig. 7. Error of baseline and optimized models after AICHRONOLENS
diagnosis

considering windows around the abrupt load decrease, model
A_A would lead to a MAE = 0.921 (which is higher than the
overall MAE computed over the entire test set, see Table I)
while the optimized model would lead to MAE = 0.619 which
is an improvement of 32%. When applied to the entire test
set, the optimized model achieved MAE = 0.69, only a 2%
decrease in accuracy with respect to model A_A.
Analysis of E2. Unfortunately, even after addressing the category
of errors E1, there may be model errors due to the character-
istics of the data itself. We now show that AICHRONOLENS
can identify those too by analyzing the output S for D2.

Fig. 8 shows qualitatively that there exists consecutive errors
with high magnitude that change of sign (e.g., first positive
then negative or viceversa). AICHRONOLENS identifies this
behavior with triangles of positive or negative correlations
over time that are interrupted by a full column with weak
correlation. Call Gt and Gt+1 the correlation vectors in the
timesteps t and t+ 1: their similarity can be assessed via the
euclidean distance d(Gt, Gt+1) =

√∑n
i=1(G

i
t −Gi

t+1)
2. We

compute the euclidean distance d between each two subsequent
correlation vectors in the test set and normalize it in the range
[0 : 1]. When d > 0.6, in 65% of the cases, we find a change of
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error sign with a corresponding MAE = 0.46, much higher than
the MAE computed over the entire dataset (i.e., MAE = 0.13).
Finding R3. To demonstrate qualitatively R3, we portray in
Fig. 9 examples of the correlation vectors in a window W = 40
timesteps in the test set for all the models in Table I. Here,
the models with the lowest learning rate (on top) tend to
exhibit a strong positive or negative correlation, with values
approaching either 1 or −1. In contrast, the correlation scores
tend to cluster around zero for models with higher learning
rates, which indicates a weaker or negligible correlation. These
behaviors are consistently observed across the test set and can
be linked with the fact that a higher learning rate trades a higher
training cost with a model that is more sensitive to changes
and more rapid to adapt to new or unseen conditions. We thus
conclude that AICHRONOLENS offers precise insights into
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the heterogeneous accuracy of models trained with different
learning rates. Orthogonal to the discussion on the learning
rate, by analyzing Fig. 9 we also observe that the depth of
the LSTM architecture, i.e., the number of neurons, plays a
marginal role for this specific dataset.

V. RELATED WORK

Relevant to our work are studies on XAI techniques like
visualization tools, and XAI, and LSTM-based forecasting
applied to mobile networks. Despite promising, the application
of imaging techniques to time series like GAF has found limited
applicability in forecasting signal quality indicators [46].
XAI Visualization Tools. Visualization tools usually build
on top of the legacy XAI techniques and make it possible to
identify which part of the input was responsible for the output
of the prediction and track the associated hidden state changes.
TSViz [47] provides a 3D visualization tool for convolutional
deep learning models. Long-Short Term Memories (LSTM)-
Vis [48] and Sequence to Sequence (Seq2Seq)-Vis [49] are
visualization tools that apply respectively to LSTM and
Seq2Seq models. Both tools are tailored to NLP applications.
Our work departs from the class of visualization tools because
AICHRONOLENS provides a way to quantify the hidden
relationships between explanations and the input.
XAI For Mobile Networks. Future 6G networks embrace the
vision for native, explainable network intelligence. A seminal
work [50] motivates the need for XAI and stress that the lack
of explainability may lead to poor AI/ML model design. This
has been proved detrimental in the presence of adversarial
attacks [51]. All the areas where AI is applied to mobile
networking tasks can benefit from explainability. These include
the physical and MAC layer design, network security mobility
management, and localization [52]. One of the shortcomings
of the existing XAI tools is the lack of deep relation between
input data and the explanations [53]. While the foundations
of AICHRONOLENS lie in harnessing such relationship, our
work goes beyond [53] as (i) we formally show that it exists
an ambiguity as legacy XAI techniques may assign the same
relevance scores to diverse input sequences, and (ii) we resolve
such ambiguity and exploit the richer expressiveness of the

outputs of AICHRONOLENS to better comprehend the LSTM
operations and optimize models performance.
LSTM-based Forecasting Applications. The recent years have
witnessed a surge of interest in applying Deep Neural Networks
for forecasting as they entail higher quality predictions than
other approaches like statistical models [54]. The prediction of
future traffic volumes forms the cornerstone of several applica-
tions that include anomaly event detection [8], scheduling of
pilot signals for channel estimation [9], user throughput [10],
buffer status reports [12], and to infer PRB utilization [13].
While all the above works rely on simple LSTM models, the
works [55], [56], [57] are more complex ML architectures
proposed with the unifying theme of better exploiting temporal
characteristics of the inputs.

VI. CONCLUSIONS

In this paper, we have investigated the timely and challenging
problem of improving the understanding of AI models like
LSTM for time series forecasting. We perform a quantitative
and qualitative study that reveals the shortcoming of existing
XAI techniques and propose AICHRONOLENS, a first-of-
its-kind tool in the area of XAI. By linking the temporal
characteristics of the input with relevance scores produced by
existing XAI techniques, AICHRONOLENS can dive deep into
the analysis of models’ behavior. Via extensive evaluations with
real-world mobile traffic traces, we show that AICHRONOLENS
makes it possible to spot different categories of model errors,
trace back the root causes, and possibly improve the poor model
design. To this end, a combined targeted data augmentation, and
minor changes to the hyperparameters can improve performance
by 32%.

The authors have provided public access to their code and/or
data at: https://git2.networks.imdea.org/wng/aichronolens.
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