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The Open Radio Access Network (RAN) paradigm is transforming cellular networks into a system of disaggre-
gated, virtualized, and software-based components. These self-optimize the network through programmable,
closed-loop control, leveraging Artificial Intelligence (AI) and Machine Learning (ML) routines. In this context,
Deep Reinforcement Learning (DRL) has shown great potential in addressing complex resource allocation
problems. However, DRL-based solutions are inherently hard to explain, which hinders their deployment and
use in practice. In this paper, we propose EXPLORA, a framework that provides explainability of DRL-based
control solutions for the Open RAN ecosystem. EXPLORA synthesizes network-oriented explanations based on
an attributed graph that produces a link between the actions taken by a DRL agent (i.e., the nodes of the graph)
and the input state space (i.e., the attributes of each node). This novel approach allows EXPLORA to explain
models by providing information on the wireless context in which the DRL agent operates. EXPLORA is also
designed to be lightweight for real-time operation. We prototype EXPLORA and test it experimentally on an
O-RAN-compliant near-real-time RIC deployed on the Colosseum wireless network emulator. We evaluate
EXPLORA for agents trained for different purposes and showcase how it generates clear network-oriented
explanations. We also show how explanations can be used to perform informative and targeted intent-based
action steering and achieve median transmission bitrate improvements of 4% and tail improvements of 10%.

Additional Key Words and Phrases: 5G, 6G, Mobile networks, O-RAN, Explainable AI

ACM Reference Format:
Claudio Fiandrino , Leonardo Bonati , Salvatore D’Oro , Michele Polese , Tommaso Melodia , and Joerg
Widmer . 2023. EXPLORA: AI/ML EXPLainability for the Open RAN. 1, 1 (November 2023), 26 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
To support this rapidly changing and complex environment foreseen in the sixth generation
(6G), the industry is now transitioning toward Radio Access Network (RAN) architectures based
upon softwarization, virtualization, and network programmability paradigms, such as the Open
RAN [61]. Specifying how to practically realize an Open RAN architecture is one of the goals of
the O-RAN Alliance. O-RAN leverages the above principles to provide an alternative to existing
Authors’ addresses: Claudio Fiandrino , claudio.fiandrino@imdea.org, IMDEA Networks Institute, Madrid, Spain; Leonardo
Bonati , l.bonati@northeastern.edu, Institute for the Wireless Internet of Things, Northeastern University, Boston, USA;
Salvatore D’Oro , s.doro@northeastern.edu, Institute for the Wireless Internet of Things, Northeastern University, Boston,
USA; Michele Polese , m.polese@northeastern.edu, Institute for the Wireless Internet of Things, Northeastern University,
Boston, USA; Tommaso Melodia , melodia@northeastern.edu, Institute for the Wireless Internet of Things, Northeastern
University, Boston, USA; Joerg Widmer , joerg.widmer@imdea.org, IMDEA Networks Institute, Madrid, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2023.

HTTPS://ORCID.ORG/0000-0002-4323-4355
https://orcid.org/0000-0002-4323-4355
HTTPS://ORCID.ORG/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
HTTPS://ORCID.ORG/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
HTTPS://ORCID.ORG/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
HTTPS://ORCID.ORG/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
HTTPS://ORCID.ORG/0000-0001-6667-8779
https://orcid.org/0000-0001-6667-8779
https://orcid.org/0000-0002-4323-4355
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0001-6667-8779
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-4323-4355
https://orcid.org/0000-0002-4323-4355
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-1511-1833
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-7690-0449
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-9740-134X
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0002-2719-1789
https://orcid.org/0000-0001-6667-8779
https://orcid.org/0000-0001-6667-8779
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 C. Fiandrino, L. Bonati, S. D’Oro, M. Polese, T. Melodia, and J. Widmer

inflexible, monolithic equipment with systems based on disaggregated, virtualized, and software-
based components that interact via open and standardized interfaces. O-RAN also introduces two
RAN Intelligent Controllers (RICs) that act as abstraction layers to monitor, control and manage
RAN components at different timescales, namely at near-real-time (or near-RT) and non-real-time
(non-RT) timescales. The near-RT and non-RT RICs host custom applications, respectively xApps
and rApps, that run Artificial Intelligence (AI)-based closed-loop control routines to optimize the
RAN operations and adapt them to current traffic demand and network conditions [61].

Bootstrapped by such initiatives, the application of AI to the Open RAN has become an emerging
area of interest [61], with contributions that encompass spectrum management [3, 68], mobility
management [13], and resource allocation [17, 32, 60], as well as custom control loops to jointly
optimize location and transmission directionality of Unmanned Aerial Vehicles (UAVs) [5]. Among
the existing data-driven techniques, Deep Reinforcement Learning (DRL) appears to be particu-
larly suitable to control Open RAN systems [42]. Unlike supervised learning models— tailored to
classification or regression tasks—Reinforcement Learning (RL) and DRL focus on decision-making
processes where decisions are made through a trial-and-error process to maximize a certain utility
function (e.g., the throughput of the network). DRL is widely used for several networking problems
related to resource allocation, handover and load balancing [27, 43, 47, 74], among others. Because
of its capability of interacting with, and adapting to, complex, highly distributed, dynamic and
uncertain environments—such as those typical of cellular RANs—is a compelling candidate AI
technique for Open RAN. Successful industry applications of DRL in the RAN cover relevant use
cases such as traffic steering (Mavenir [51]), and handover management (Intel [29]), among others.
Motivations and Objectives. Since DRL agents leverage deep neural networks, the logic gov-
erning their decisions is frequently hard to understand. This is unlike, for example, Decision
Trees (DTs) [45], whose structure and decision-making logic is generally explicit and easy to
understand, especially in relatively simple and confined practical applications such as automated
Base Station (BS) reconfiguration [49]. Despite their effectiveness, the lack of explainability of
DRL models makes them difficult to use in production networks because of the inherent lack
of understanding of the logic behind decisions. This complicates troubleshooting and predicting
decisions, and makes DRL more vulnerable to adversarial attacks [66]. The issue affects AI at large,
not only DRL, and makes understanding why models take certain actions more difficult, especially
with complex environments and large action spaces.

To address these problems, the research community is trying to shed light on the inner mecha-
nisms of such models to make them more explainable and interpretable. For instance, Puiutta et
al. [63] coined the term EXplainable Reinforcement Learning (XRL) and illustrate several explain-
ability techniques that are specific to the learning paradigm. However, although the interest in
promoting trust and interpretability to AI has recently gained momentum [72], explainable AI in
the context of mobile networks is still at its early stages and largely unexplored [16, 53].
Our Contribution. In this paper, we try to fill this gap and make DRL for Open RAN applications
more robust, resilient and—more importantly— explainable. Specifically, we develop EXPLORA, a
lightweight O-RAN-compliant framework designed to explain the logic of DRL agents executed
within xApps or rApps performing near- and non-real-time closed-loop resource allocation and
control. In contrast with the traditional approach, where model explanations only provide intuitions
that reveal how inner mechanisms of a model work (e.g., neuron activation), we ensure that EXPLORA
also provides informative explanations on the wireless network behavior to help operators in
interpreting AI decisions [53]. Specifically, we advance EXplainable Artificial Intelligence (XAI)
and XRL research in several ways.
We show that EXPLORA addresses complex challenges (§ 3.3) that prevent the direct use of

state-of-the-art XAI tools (§ 3.2). We base the XAI component of EXPLORA on attributed graphs
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to connect the actions taken by the agents (nodes) to the effect on the environment (attributes
of the nodes) and to distill knowledge by analyzing the transitions between actions (edges - § 4).
This allows EXPLORA to explain models by highlighting the circumstances under which a DRL
agent takes specific actions. Overall, such combined knowledge (i.e., input-output relations and
conditions that trigger certain actions) is useful to domain experts and mobile operators willing
to retain full control of the AI-based system and, if needed, to consciously override or inhibit AI
decisions on the basis of previously identified intents to be fulfilled.
We experimentally demonstrate the explainability capabilities of EXPLORA on Colosseum, the

world’s largest O-RAN wireless network emulator [52]. Specifically, we apply EXPLORA to xApps
embedding DRL agents for control of RAN slicing and scheduling, developed via the OpenRAN
Gym open-source O-RAN data collection and AI testing toolbox [6] (§ 5.1). We show not only that
EXPLORA is capable of synthesizing explanations that facilitate monitoring and troubleshooting
(§ 6.2), but also that it helps to improve RAN performance by using explanations to proactively
identify and substitute actions that could lead to poor performance (§ 6.3).
Key Contributions and Findings. Our far-reaching goal is to contribute toward promoting AI
trustworthiness in Open RAN. The key contributions (marked with “C”) and findings (“F”) of our
study are summarized as follows:
C1. We propose EXPLORA, a new framework for network-oriented explanations. EXPLORA provides

informative post-hoc explanations and can evaluate the effectiveness of control actions taken
by the DRL agents;

C2. We implement EXPLORA as an xApp on an O-RAN-compliant near-RT RIC; and
C3. We release the artifacts of our study on https://github.com/wineslab/explora.
F1. We find that EXPLORA provides effective and concise explanations fully characterizing DRL

agents behavior.
F2. We find that EXPLORA enables the creation of ad-hoc policies for intent-based action steer-

ing that ultimately improve users’ Key Performance Indicators (KPIs). We observe median
transmission bitrate improvements of 4% and tail improvements of 10%.

2 BACKGROUND
In this section, we provide background knowledge on the different technologies considered in our
paper: O-RAN (§ 2.1), DRL (§ 2.2), and finally XAI and XRL (§ 2.3).

2.1 Background on O-RAN
The O-RAN specifications introduce a complete architectural model for the Open RAN (see Figure 1).
The interactions and interoperability betweenmulti-vendor equipment implementing disaggregated
RAN next Generation Node Bs (gNBs) (i.e., central, distributed and remote units—O-CU, O-DU
and O-RU) is possible via open and standardized interfaces. Management and control is provided
by a set of RAN Intelligent Controllers (RICs) that operate at different timescales, i.e., non-RT
(timespan larger than 1 s) and near-RT (timespan between 10 ms to 1 s) [61]. The non-RT RIC
enforces policies controlling thousands of devices, including data collection and training phase
of the AI/Machine Learning (ML) workflows at large and provides the near-RT RIC with policy-
based guidance through the A1 interface. It is embedded in the network Service Management and
Orchestrator (SMO), which performs automated monitoring and provisioning of network functions
through the O1 interface. The near-RT RIC operates control loops for policy enforcement (i.e.,
control) at a smaller scale (tens to hundreds of nodes) and governs radio resource management
operations such as resource allocation [17, 61] by interacting with the RAN nodes through the
E2 interface. The RICs can host third-party applications, i.e., rApps at non-RT scale and xApps at
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Fig. 1. The O-RAN reference architecture

near-RT scale. These custom applications execute control logic for dynamic network optimization
and are a key enabler for enforcing zero-touch network automation and self-configuration.

2.2 Background on DRL
In RL and DRL, agents dynamically interact with an environment to maximize a target utility
function [69]. Formally, the environment is defined as a Markov Decision Process (MDP). At each
time step 𝑡 , the agent first observes the environment to estimate its state 𝑠𝑡 ∈ S, and then takes
an action 𝑎𝑡 ∈ A that follows a policy 𝜋 : S → 𝑃 (A). In general, actions can be multi-modal and
consist of combined decisions affecting two or more control parameters. Specifically, any action
𝑎𝑡 can be expressed as a 𝑐-tuple, i.e., 𝑎𝑡 = (𝑎1𝑡 , 𝑎2𝑡 , . . . , 𝑎𝑐𝑡 ), where 𝑐 represents the number of modes
of the action. When the action 𝑎𝑡 is taken, the environment transitions from state 𝑠𝑡 to the next
state 𝑠𝑡+1 following a transition kernel 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), and generates a reward 𝑟𝑡 : S × A → R.
Starting from an initial state 𝑠0, the tuple𝑀 = (S,A,𝑇 , 𝑟, 𝑠0, 𝛾) defines the MDP and, in the most
general setup, the objective of the agent is to learn a policy 𝜋 that maximizes the weighted reward
𝑅(𝜋) = ∑+∞

𝑡=0 𝛾
𝑡 𝑟𝑡 , where 𝛾 is a discount factor used to fine-tune the weighted sum of rewards.

Specifically, a value of 𝛾 closer to 1 would aim at maximizing the long-term reward, while a value
closer to 0 would prioritize the short-term reward.

2.3 Background on XAI and XRL
A Primer on AI Explainability. Promoting trustworthiness in AI has received a lot of interest in
recent years [20, 54, 72]. While interpretability contextualizes the model decision-making in relation
to its internal design, explainability encompasses interpretability and goes beyond by aiming at
justifying how and why a model achieves a given output in a human understandable manner [7].

Regarding interpretability, there exist model-agnostic and model-specific XAI techniques. Both
reveal which part of the input data or features have more influence on a prediction. SHapely
Additive exPlanations (SHAP) [46], Local Interpretable Model-agnostic Explanations (LIME) [64],
and Eli5 [35] are model-agnostic and provide model interpretations by identifying input relevance
via perturbation techniques. Instead, DeepLIFT [67] and LayeR-wise backPropagation (LRP) [55]
provide interpretations by evaluating which activation/neurons were relevant to a prediction via
backpropagation. Hence, these techniques need to be specialized for the specific AI model.
XAI and XRL. The literature is inconsistent in the way the terms are classified: [36] defines XAI
and XRL as a collection of techniques applicable to supervised and RL respectively, while [10, 63]
take a different approach and define XRL as a subset of XAI. We find the latter definition more
appropriate as techniques like SHAP and LRP have been applied to DRL [73, 77].
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3 MOTIVATION AND CHALLENGES
In this section, we first delve into the design principles of DRL solutions for the RAN, and then
illustrate why currently available XAI tools cannot be applied as-is to such DRL models.
Data-driven RAN reconfiguration. The RAN is characterized by a large number of parameters
and functionalities that can be monitored and configured. In general, these can be categorized
according to the timescale at which they are updated. Cell parameters like cell ID, coverage radius,
antenna orientation and energy saving mechanisms are usually updated over the course of several
seconds, minutes, hours or even days. In contrast, transmission power control policies, interference
management, handover, and resource allocation are configured in the sub-second timescale. How to
optimally determine these configurations is a well-known problem which has been tackled several
times via DTs or DRL. DTs work well in the case of feature selection or rule-based configuration
empowered by past historical data like the case of Auric for BSs [49] or Configanator for content-
delivery networks [57]. DRL agents are effective solutions for configuring parameters at shorter
timescales where dynamic reconfiguration must be achieved by adapting and responding to real-
time measurements. Alternatively, they can be used after the exploitation stage for parameter
configuration [18]. DTs are self-interpretable vis-a-vis with DRL agents and have been used either
directly for rule-based configurations [49, 57], or indirectly to deliver explanations of DRL agents
that enforce simple decisions like bitrate selection in Adaptive Bit Rate (ABR) context [53].

Unfortunately, DRL solutions for O-RAN systems are, in general, more complex than those used
in the above examples, and they share a common set of features that we elaborate hereafter. First,
O-RAN networks belong to a class of systems that are very hard to model and observe. Thus, it
is common practice to feed DRL agents with a low-dimensionality latent representation of the
observed network state rather than with the state itself. Indeed, the latter usually consists of
large quantities of heterogeneous and real-time KPI measurements with high variance, which
might results in the so-called state space explosion, where the number of states is so large that the
agents cannot learn an effective policy or would require excessively long training time. The use
of autoencoders is a well-established ML tool to mitigate the above issues [38, 62]. Second, DRL
agents may take hierarchical actions where controllable parameters depend on the value of other
non-controllable parameters, previously observed states, or actions taken in the past (e.g., a DRL
agent controlling resource allocation policies subject to higher level power control [30]). Third, DRL
agents may take multi-modal actions that involve diverse control parameters. Practical examples
include making joint decisions on user scheduling and antenna allocation [28], RAN scheduling and
slicing policies [60], or simultaneous control of computing resources and Modulation and Coding
Scheme (MCS) [2].

3.1 Use Case Throughout the Paper
Although EXPLORA is general in its design and scope of applicability, in the rest of the paper, we
will consider a use case of practical relevance in O-RAN systems. Specifically, we consider [60]
where the authors developed a set of xApps jointly controlling RAN slicing and scheduling policies
for a set L of slices: (i) enhanced Mobile BroadBand (eMBB); (ii) massive Machine-type Communi-
cations (mMTC); and (iii) Ultra-Reliable and Low Latency Communications (URLLC). We use the
configurations and xApps embedding the pre-trained agents, which were provided upon request by
the authors. Each agent optimizes resource allocation policies for an Open RAN gNB. For each slice,
the DRL agent selects a RAN slicing policy (i.e., the number of Physical Resource Blocks (PRBs)
reserved to the slice), and the optimal scheduling policy to serve the User Equipments (UEs) of the
slice among Round Robin (RR), Waterfilling (WF), and Proportional Fair (PF).
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Fig. 2. The DRL framework consisting of an autoencoder and a DRL agent
The DRL agent depicted in Figure 2 takes actions to maximize a target reward by monitoring a set
K of KPIs received from the gNB via the E2 interface and processed by an autoencoder. Specifically,
the input I to the xApp consists of a𝑀 ×𝐾 × 𝐿 matrix where 𝐿 = |L| = 3 represents the number of
slices, 𝐾 = |K | = 3 is the number of monitored KPIs (i.e., transmission bitrate in Mbps, number of
transmitted packets, and size of the downlink (DWL) buffer in bytes), and𝑀 = 10 is the number
of individual measurements collected over the E2 interface for each slice. With a slight abuse
of notation, let K = {tx_bitrate, tx_packets, DWL_buffer_size} be the set of input KPIs. The
generic element of the input matrix I is denoted as 𝑖𝑚,𝑘,𝑙 with𝑚 = 1, . . . , 𝑀 , 𝑘 ∈ K , and 𝑙 ∈ L.
I is fed to an autoencoder that produces a latent representation of the input of size 𝐾 × 𝐿 (AE0,

AE1, AE2 in Figure 2). This low-dimensional representation is then fed to the DRL agent which
embeds a Proximal Policy Optimization (PPO) architecture to compute a 𝑐-mode action (i.e., 𝑐 = 2
in our use case) representing the combination of per-slice scheduling and slicing policies. At each
time step 𝑡 , the agents compute a reward function that maximizes the weighted sum of average
KPI values for each slice:

𝑟𝑡 (I) =
∑︁
𝑙 ∈L

𝑤𝑙 ·
𝑀∑︁

𝑚=1

𝑖𝑚,^ (𝑠),𝑙
𝑀

, (1)

where I represents the𝑀 ×𝐾 ×𝐿 KPI input matrix, and ^ (𝑠) ∈ K is used to indicate and extract only
the target KPI for each slice from I. Specifically, for the eMBB slice the target KPI is tx_bitrate,
while the target KPIs for the mMTC and URLLC slices are tx_packets and DWL_buffer_size,
respectively.𝑤𝑙 is a real-valued parameter used to weight the importance of each slice toward the
reward maximization goal.𝑤𝑙 takes positive values to maximize the reference KPIs of eMBB and
mMTC slices and is negative to minimize DWL_buffer_size for the URLLC slice as a proxy for
minimizing latency. We extend [60] and consider two DRL agent configurations:1
• High-Throughput (HT) prioritizes eMBB slice’s reward contribution over the other two;
• Low-Latency (LL) prioritizes the contribution of the URLLC slice over the other two slices.

These agents control the RAN which is a highly non-stationary and dynamic environment with
changing channel conditions and they handle diverse traffic profiles in each slice. There are obvious
tradeoffs behind the agents’ decisions: assigning too many PRBs to the eMBB slice substantially
reduces the throughput that UEs of the other two slices will experience (see § 6). Furthermore,
agents deal with a continuous state space, the output of the autoencoder, which also makes it hard
to quantify the number of states of the system. Therefore, it becomes essential for domain experts
access XAI tools to better comprehend agents’ decisions under time-varying network conditions.

3.2 Applying XAI Tools Out-of-the-Box
We now elaborate the need for EXPLORA by showing the inherent limitations of popular XAI tools
(i.e., SHAP and DTs) applied to the HT and LL agents described in § 3.1.

1We only retain basic configurations like scaling and normalizing the KPIs in the range [−1, 1].
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Fig. 3. The fine-grained details of SHAP explanations for the HT agent

SHAP has been proven effective in a number of scenarios in combination with DRL-based
solutions. Recent works have leveraged SHAP for power- and UAV-control [25, 77], biomedical
scenarios [65] and in the presence of multi-agent systems [26, 41]. In a nutshell, SHAP provides
feature-based interpretations by approximating the Shapley values of a prediction and generates
global and local explanations in the form of log-odds, which can be turned into a probability
distribution with the softmax operation.

DTs can also explain DRL agents. Metis [53] converts Deep Neural Networks (DNN) and DRL
solutions into interpretable rule-based configurations via DTs and hypergraphs. Trustee [31]
constructs a high-fidelity and intuitive DT taking as input both the AI model and training dataset.
If applied out-of-the-box, SHAP and DTs would be applicable only at DRL agent block of Figure 2.
We now elaborate why both are ill-suited to deliver interpretations on the whole architecture.

Figure 3 portrays an example of the outcome of applying SHAP to the HT agent. For each slice,
SHAP computes relevance scores by determining the average contribution of each element of
the input across all possible permutations of elements’ values with respect to the output of the
agent, i.e., the corresponding action, expressed as the number of PRBs (taking values in [0, 50]) and
scheduling policy (among RR, WF, PF) assigned to the slice. The inputs of the DRL agent are the
outputs of the autoencoder (AE0, AE1, and AE2 in Figure 2) and not the actual inputs of the system,
i.e., the KPIs. Formally ∀𝑖 = 1, 2, . . . , 𝑁 , with 𝑁 = 𝐾 × 𝐿, the score 𝑟𝑖 ∈ 𝑅𝑁 is computed as:

𝑟𝑖 (𝑓 ) = 1
(𝑁 − 1)!

𝑁−1∑︁
𝑘=1

∑︁
𝑋𝑠 ⊆𝑋𝑡 , |𝑠 |=𝑘

[(
𝑁 − 1
𝑘

)]−1
· (𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑠 )) , (2)

where 𝑓 (𝑋𝑡 ) is the action taken considering all the features 𝑋𝑡 = {AE0,AE1,AE2}, 𝑠 = 𝑁 − 1 is a
subset of the 𝑁 features of the input sequence, and 𝑓 (𝑋𝑠 ) is the action taken under input 𝑋𝑠 .

We now elaborate on the pros and cons of SHAP as a result from extensive tests executed for both
HT and LL agents in various settings that include varying the number of users per slice and traffic
scenarios (see Table 3 in Appendix A). SHAP is extremely precise in identifying which feature is the
most important for taking an action, and reveals the precise operation of the agent. Figure 3 shows
for 20 time steps the values of the DRL inputs and outputs. The colors of the color-bar identify the
relevance scores of the DRL inputs computed with SHAP: blue and red colors correspond to low
and high scores respectively. Samples denoted with low relevance in all the DRL inputs (see index
573 in Figure 3) trigger a change in scheduling policy which follows a change in PRB allocation
(e.g., the scheduling policy of the eMBB slice transitions from WF to PF - highlighted with frames
in Figure 3). However, SHAP (i) is limited by the autoencoder to show non-intuitive explanations,
i.e., feature relevance of autoencoder outputs per policy and for each slice and not the actual inputs
(the KPIs at user level); and (ii) is extremely costly from a computational perspective. Even for few
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users, computing SHAP values on Nvidia RTX 3090 and A100 SXM4 GPU cards can take hours (see
Figure 4(a)): this holds across agents (see Figure 4(b)) and for the other configurations tested. Note
that increasing the number of users from 4 to 6 does not produce tangible changes.
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Fig. 4. SHAP computational complexity. Ticklabels on x-axis denote
the number of <𝑥> users in the experiment. Experiments with 1 user
only are executed for the three slices.

Table 1. Classification accuracy

Config. DT Accuracy
CLL,trf1−4 18.74%
CHT,trf1−3 43.35%
CLL,trf2−3 58.52%
CLL,trf1−1 23.20%
CHT,trf1−1 35.71%
CHT,trf2−1 37.86%

We also build DTs via an XGBoost model [9] with 𝑁 features and target label equal to the action,
i.e., the output of the DRL agent. Table 1 shows that the ensemble of decision trees is not performing
well in the classification task across different configurations. This prevents from explaining how
the agent takes an action upon observing 𝑋𝑡 . As this part does not become interpretable, it is not
possible to provide explanations to the overall framework of Figure 2 via divide and conquer (i.e.,
explaining first the DRL agent and backpropagate to the input by explaining the autoencoder).
In conclusion, SHAP is too fine-grained and slow. Both SHAP and DTs are unable to provide

intuitive explanations to link agent outputs, i.e., actions, with their impact on KPIs, e.g., tx_bitrate.

3.3 XAI Challenges
Based on the above discussion, we identify the following three major challenges:
• Challenge 1: While autoencoders are of great help to reduce the input dimension and facilitate
generalization, they also eliminate the direct input-output connection that state-of-the art XAI
techniques such as SHAP and LRP build upon. That is, when using autoencoders, SHAP and LRP
can only reveal the contribution that the latent space representation had on the action taken by the
agent, but lose any information on how the actual input affected the decision-making process.
• Challenge 2: Whenever actions depend on either past actions or states of the environment (e.g.,
previous PRB allocation), the decision-making process relies on memory. Such feedback loop adds
an additional layer of complexity to the already complex and non-linear relationship between
inputs and outputs. This prevents the use of well-established tools such as casual models [48] as it
becomes harder to identify the direction of causality, primary cause and primary effect of an action.
• Challenge 3: Unlike many popular DRL-based agents that control individual parameters [50, 75],
actions that agents take in O-RAN systems are likely multi-modal and involves several control
parameters at the same time like RAN slicing and scheduling policy. This makes it hard to leverage
existing XAI tools which are primarily tailored to explaining much simpler control actions.
With EXPLORA, we aim to address these challenges and provide explainability for the class

of DRL-based Open RAN solutions described above. Specifically, we seek explanations that are
intuitive, e.g., which actions determine changes in KPIs. We believe that a clear understanding and
programmability of the agent behavior is key to lower the barrier for adopting DRL in operational O-
RAN networks and provide operators with the necessary tools to understand why the AI has taken
a certain decision thus building useful knowledge to design and deploy more efficient networks.
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4 THE EXPLORA FRAMEWORK
Because of above-mentioned challenges, we deal with systems where the input-output link is not
available (Challenge 1), the decision making process relies on memory (Challenge 2), and actions
are multi-modal (Challenge 3). We address these challenges by embedding into attributed graphs
multi-modal actions (nodes) and their impact on the future state (attributes). This allows recording
the consequence of an action. To distill knowledge, we analyze transitions over time (edges) and
quantify statistically the distance between the attributes of the respective nodes. Thus, we can
explain the agent behavior by determining the effect of its decisions on the environment with
details on the contribution of each component of the multi-modal action.

Next, we first motivate the choice of attributed graphs and elaborate why other data structures like
DTs, hypergraphs or multi-layer graphs are not effective (§ 4.1), describe the EXPLORA architecture
and elaborate on how it interacts with DRL agents (§ 4.2). Then, we explain how to distill knowledge
from the attributed graph (§ 4.3). Finally, we show how to leverage the explanations to improve the
DRL agent’s decision-making process (§ 4.4).

4.1 Design Choices
Domain experts seek to receive from XAI tools explanations inherently related to understanding the
logic and dynamics that tie inputs to outputs [53]. For DRL, this directly translates into understanding
the reason why an agent has taken action 𝑎𝑡 at time 𝑡 when observing state during a window
𝛿 before 𝑡 , i.e., 𝑠 (𝑡−1)+𝛿 . Deriving such logic is not easy, as the unidirectional link input-output is
essentially broken by the introduction of the autoencoder (Challenge 1). However, we leverage the
fact that any action 𝑎𝑡 will alter the future state 𝑠𝑡+𝛿 , which is observable even with the autoencoder.
Next, we generate knowledge by analyzing the changes in subsequent actions 𝑎𝑡 → 𝑎𝑡+1 and the
corresponding change of states 𝑠𝑡+𝛿 → 𝑠𝑡+1+𝛿 . We thus seek a data structure capable of capturing
such connections.
In the past, explainability has been delivered via several data structures [14, 19], with the most

well-established being DTs [53, 56] and hypergraphs [53]. For example, Metis [53] combines both
DTs and hypergraphs to distill knowledge and has proved successful when applied to Pensieve [50],
an Adaptive Bit Rate (ABR) DRL system that optimizes video bitrate selection (i.e., the action) by
observing and adapting to past video chunk bitrate, throughput, buffer occupancy (i.e., the state).
However, XAI tools that use DTs and hypergraphs can be applied only to DRL agents like Pensieve
that take unimodal actions such as selecting the bitrate on a per-user basis, which makes them
unsuitable to address both Challenge 1 and Challenge 3. When applying DTs to DRL agents with
multi-modal actions, we observed a lack of generalization resulting from attempts of pruning the
excessive growth scale of the DTs.
We resort to attributed graphs [37]. Formally, an attributed graph 𝐺 is defined as 𝐺 = (𝑁, 𝐸, 𝐵)

where N is a set of nodes, E ⊆ N × N is a set of edges, and B is a set of attributes associated
with N . Specifically, for each node 𝑛 ∈ N , there exists an attribute 𝑏 (𝑛) ∈ B consisting of at
most 𝑃 elements: 𝑏 (𝑛) = {𝑏1 (𝑛), . . . , 𝑏𝑝 (𝑛)}. Multi-layered graphs and hypergraphs are useful
mathematical tools to model complex and multiple relations among multiple entities, like resource
allocation in cloud-RAN systems where users are connected to radio units depending on channel
conditions and radio units are connected to centralized units according to traffic load [76]. In
contrast, attributed graphs capture effectively individual relationships between entities against
a common set of properties. This is precisely the case of DRL agents where entities are actions,
the relation between entities is temporal (i.e., action 𝑎𝑡+1 occurs after 𝑎𝑡 ) and the common set of
properties of the entities maps to the state 𝑠 associated to each action 𝑎. We will describe how to
build the attributed graph in § 4.2.
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Fig. 5. EXPLORA interaction with a DRL agent

4.2 EXPLORA: System Architecture
The architecture. EXPLORA consists of the XAI module (❶ in Figure 5) and the XAI-aided
Explanation-Driven Behavior Refiner (EDBR) module (❷ in Figure 5). ❶ generates post-hoc ex-
planations about the agent behavior by building the attributed graph 𝐺 throughout an observation
window𝑊 . ❷ leverages such explanations to understand the decision-making process (§ 4.3),
identifies inefficiencies and improves overall network performance (§ 4.4).
Figure 5 shows how these two blocks interface with the DRL agent as well as their workflow

execution. The DRL agent interacts with the environment as described in § 2.2, with the sole
exception that the input is the latent representation and not the state. This approach can be easily
applied to a variety of DRL models such as Deep Q-Network (DQN) [75], PPO [60] or Asynchronous
Advantage Actor-Critic (A3C) [50]. These differ in the way the agent learns the optimal policy.
Generating the attributed graph. To generate the attributed graph 𝐺 described in the previous
section, EXPLORA’s XAI module (❶ in Figure 5) performs the following operations. During 𝑡 ∈𝑊 ,
each action 𝑎𝑡 = (𝑎1𝑡 , . . . , 𝑎𝑐𝑡 ) (representing the decision of RAN slicing and scheduling policies
with 𝑐 = 2 in our use case) is mapped to a node 𝑛 of the graph. The impact of 𝑎𝑡 on the future
environment state, 𝑠𝑡+1, is instead mapped to the attribute 𝑏 (𝑛). For our use case, we embed the
distribution for each monitored KPIs and for each slice as the 𝑏𝑝 (𝑛) element of the attribute, where
𝑝 ∈ P, P = K × L and 𝑃 = 𝐾 · 𝐿. From § 3.1 and § 2.2, the action 𝑎 ∈ A is multi-modal and
can be defined as a 𝑐-tuple 𝑎 = (𝑎1, . . . , 𝑎𝑐 ). Similarly, the state 𝑠𝑡 ∈ S can be defined as a tuple
which, in our case, is the input matrix I. An edge connecting actions 𝑎𝑡 and 𝑎𝑡+1 (𝑎1 and 𝑎𝑛 in
Figure 5) indicates the transition between actions taken at subsequent time instances. As 𝑏 (𝑎𝑡 )
indicates the effect of 𝑎𝑡 on 𝑠𝑡+1, then the unidirectional edge 𝑎𝑡 → 𝑎𝑡+1 indicates that 𝑏 (𝑎𝑡 ) is the
input state space for 𝑎𝑡+1. This closes the loop broken by the presence of the autoencoder. DTs and
hypergraphs fail precisely in providing a link connecting actions to their consequences onto the
environment and then on the next action. The same would apply to multi-layer graphs embedding
one of the components of the multi-modal action in each layer. After𝑊 observations, 𝐺 makes it
possible to distill knowledge regarding the agent’s behavior (§ 4.3) and the expected outcome of an
action is known in advance and before it is actually enforced.

In the majority of DRL-based systems for Open RAN, the state and action spaces S andA of the
DRL agents might be very large, as they embed real-valued variables such as throughput, channel
conditions, buffer size, latency, to name a few. Therefore, to tackle this complexity and contain
the size of the attribute space, we operate as follows. First, the set P has limited dimension, as it
depends on the number 𝐾 of KPIs included in the state 𝑠 and the number 𝐿 of slices. Second, each
element 𝑏𝑝 (𝑛) ∈ 𝑏 (𝑛) only stores the distribution of each KPI. In the right portion of Figure 5, we
show an example of the attributed graph 𝐺 with two actions (i.e., nodes) 𝑎1 and 𝑎𝑛 , each storing 3
attributes (i.e, 𝑏1 (𝑎1), 𝑏2 (𝑎1), and 𝑏3 (𝑎1) for 𝑎1). In Appendix B, we provide explanations about the
generation of 𝐺 for three consecutive step. Next, we show how to distill knowledge from 𝐺 (§ 4.3),
and how this knowledge can be used by module ❷ to improve overall performance (§ 4.4).
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4.3 Synthesizing Network-Oriented Explanations
EXPLORA distills knowledge by analyzing transitions between actions (edges in 𝐺). This allows to
characterize the individual contribution of each component of a multi-modal action. For example,
in our use case, the graph will reveal if a multi-modal action (recall that 𝑐 = 2) produces changes in
KPIs like throughput because of a change in RAN slicing, scheduling policies or both. This would
not be possible with other data structures that do not link attributes (KPIs) to nodes (actions). Any
action taken at time 𝑡 can be expressed as a 2-tuple, (in our case, slicing and scheduling policy)
𝑎𝑡 = (𝑎1𝑡 , 𝑎2𝑡 ). Then, at any transition between 𝑡 and 𝑡 + 1, there exists 2𝑐 possible combinations
to describe how actions transition between 𝑎𝑡 and 𝑎𝑡+1. For example, in one case 𝑎1𝑡 = 𝑎1𝑡+1 but
𝑎2𝑡 ≠ 𝑎2𝑡+1. In another, 𝑎1𝑡 ≠ 𝑎1𝑡+1 and 𝑎2𝑡 = 𝑎2𝑡+1. The remaining two cases are: the case where
the action remains the same, i.e., 𝑎𝑡 = 𝑎𝑡+1, and the one where they are completely different, i.e.,
𝑎𝑖𝑡 ≠ 𝑎

𝑖
𝑡+1 for 𝑖 = 1, 2.

EXPLORA builds a set of ordered pairs (𝜋, 𝑣), where each 𝜋 maps the action transition 𝑎𝑡 → 𝑎𝑡+1
and 𝑣 maps the corresponding change of impact to the respective states 𝑠𝑡+1 → 𝑠𝑡+2 (in our use
case, each 𝜋 would correspond to a RAN slicing and policy scheduling enforced in two subsequent
timesteps). We can now quantify such impact via the attributes 𝑏 (𝑛) and 𝑏 (𝑛 + 1) of the nodes
𝑛 and 𝑛 + 1 representing the action transition 𝑎𝑡 → 𝑎𝑡+1. Recalling that each 𝑏𝑝 (𝑛), with 𝑝 ∈ P
embeds a distribution of each KPI for each slice, we can compare each 𝑏𝑝 (𝑛 + 1) → 𝑏𝑝 (𝑛 + 2) using
either statistical techniques like the Jensen Shannon divergence or, for example, directly comparing
avg{𝑏𝑝 (𝑛 + 1)} and avg{𝑏𝑝 (𝑛 + 1)}. The result of such comparison is stored in 𝑣 = 𝑣1, 𝑣2, . . . , 𝑣𝑝
and is the knowledge we leverage to produce informative explanations, i.e., which is the effect
that changes of RAN slicing and/or scheduling policies produce on KPIs like throughput or buffer
size. To distill knowledge, EXPLORA uses DTs. Specifically, it builds a DT where the set of features
is 𝑣 and the target label is the corresponding class of action transition among the 2𝑐 possible
combinations. The resulting DT identifies which changes on KPIs are associated to each class of
transitions and the visual inspection of the tree provides informative explanations in the form: “the
agent uses completely different transitions (𝑎𝑖𝑡 ≠ 𝑎

𝑖
𝑡+1) to increase the tx_bitrate.” Note that the use

of DTs for knowledge distillation does not imply that DTs could substitute the original DRL agents
in taking joint decisions on PRBs allocation and scheduling policy. We will show in § 6.2 how to
turn these explanations into a concise and effective summary of the agent’s behavior.

4.4 Optimizations Enabled by EXPLORA
With the distilled knowledge generated by ❶, EXPLORA’s EDBR module (❷) makes it possible to
perform informed and targeted ad-hoc adjustments to the agent’s behavior to modify its decision-
making process with the goal of improving the overall network performance. This fits well with
intent-based networking [39] which aims at delivering a simplified and agile network management
where complex configurations are translated into high-level intents.

Following O-RAN specifications, DRL agents are usually trained offline2 on data that might not
necessarily accurately reflect the type of data observed in real-time. This is because an ideal training
is extremely complex3 and impractical for production networks where the number of scenarios to
be accounted for is huge (e.g., number of served users, traffic dynamics, propagation characteristics
of the environment, among others). Optimal actions on training data may thus perform poorly in
a live network, e.g., because of different traffic profiles and topologies [60]. EXPLORA builds and
updates 𝐺 over time, and hence can be used to identify inefficient actions that are attributed to

2Note that this is a strict requirement for any AI-based xApp and rApp [61].
3To train agents HT and LL, the data collection took two and a half months on Colosseum and the actual training operation
took approximately 10-15 hours on a single NVIDIA A100 GPU, depending on the model.
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Fig. 6. EXPLORA integration into the O-RAN reference architecture

imperfect training and offer mechanisms that prevent inefficiencies. While the explanations can
simply be used to understand how agents make decisions, we further discuss two concrete possible
uses that domain experts can make of the distilled knowledge.
• Opt 1: Intent-based action steering replaces an action selected by the agent with another extracted
from the attributed graph𝐺 to fulfill specific intents. For example, if an agent takes an action that
𝐺 marks as potentially resulting in an expected low reward, EXPLORA can suggest an alternative
action from 𝐺 that would yield a higher expected reward.
• Opt 2: Action shielding prevents the agent from taking specific actions considered dangerous.
Unlike action steering, action shielding completely inhibits specific actions and is mainly used for
security purposes [1] (e.g., for active voltage control [8]).

Given the highly non-stationary dynamics of the RAN and the class of resource allocation DRL-
based solutions considered in this work,Opt 1 looksmore attractive as it enables to programmatically
control the agent behavior with consciousness and thanks to the understanding of the impact that
certain actions have on the state of the network. We will discuss policies for action steering in § 5.2,
and show such benefits in § 6.3.

5 EXPLORA IMPLEMENTATION
In this section, we illustrate how to embed EXPLORA into xApps (§ 5.1), and elaborate on possible
action replacement strategies to improve overall KPI performance (§ 5.2).

5.1 Integrating EXPLORA in xApps
Thanks to the flexibility offered by the O-RAN architecture, we identify three possible strategies to
make EXPLORA an operational component of the near-RT RIC. Specifically, it can be: (i) a base
component of the RIC itself hosted outside the xApp domain; (ii) a component of each xApp,
embedded in the microservice that executes the DRL agent; or (iii) a standalone xApp that interacts
with one or more xApps hosting DRL agents. Strategy (iii) provides the best trade-off between
flexibility and cost: the dedicated EXPLORA xApp can be replicated as needed to support diverse
use cases and interacts directly with the xApps hosting DRL agents without requiring changes as
in strategy (ii), or to the near-RT RIC platform.

The left part of Figure 6 illustrates how the EXPLORA xApp interacts with other components of
the O-RAN architecture. The E2 termination of the near-RT RIC platform routes E2 data (KPIs) to a
data access microservice that stores it in a data repository inside the RIC. The same microservice
is queried by the DRL and EXPLORA xApps to access stored data. As discussed in § 3.1, the DRL
xApp uses the KPIs to first feed the autoencoder and then the agent (HT or LL in our use case),
thus making such KPIs represent the state 𝑠 observed by both the DRL and EXPLORA xApps.
The DRL xApp then generates an action 𝑎 in a RIC internal message (e.g., for the E2 service

model RAN Control) that is sent to the RIC Message Router (RMR), as shown in Figure 6. The
RMR is in charge of dispatching internal messages across different components, e.g., xApps and E2
termination, and can be configured with ad-hoc routes based on the endpoints and message ID [59].
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Therefore, to seamlessly integrate the EXPLORA xApp within the RIC, we configure the RMR to
route the RAN control messages to the EXPLORA xApp. If the EXPLORA xApp is not deployed, the
RMR delivers the control message to be enforced at the O-DU from the DRL agent xApp via the E2
termination directly (see the red dashed line in Figure 6).

Once the EXPLORA xApp receives action 𝑎, it can decide whether to forward it as is to the RMR,
which then sends it to the E2 termination, or to update it with an action 𝑎 computed by following
one of the strategies discussed in § 5.2. The EXPLORA xApp can also interact with the data access
microservice to save the explanations and information on the state/action/explanation tuple in
the data repository. This can later be accessed by the network operator for quality assurance,
debugging, and/or datasets generation purposes.

5.2 Strategies for Action Steering
Wenow show ad-hoc adjustments that domain experts (e.g., network operators) can use to ultimately
improve users’ KPIs by defining high-level intents. In the case of imperfect training (see § 4.4), the
agent might observe previously unseen input data, which might result in taking a sub-optimal (or
inefficient) action 𝑎𝑡 . 𝑎𝑡 is sub-optimal if its expected reward could be improved by another action
𝑎
′
𝑡 . The EDBR module uses the knowledge built and distilled via the synthesis of explanations from
𝐺 to suggest another action 𝑎𝑡 whose expected reward and impact on the future state is statistically
known from the past. Algorithm 1 provides the details of the implemented intent-based action
steering strategies, which are summarized hereafter. For the sake of demonstration, and due to
space limitations, we limit the graph exploration to the first hop nodes of 𝐺 only. This restriction
highlights the benefits of the strategies in a worst-case scenario.
• AR 1 - “Max-reward”: this strategy replaces an action 𝑎𝑡 suggested by the agent that is expected
to yield a low reward with one extracted from the graph (𝑎𝐺 ) that is expected to yield a higher
reward. This can be achieved by extracting the attributes 𝑏 (𝑎𝑡 ) and 𝑏 (𝑎𝐺 ) from the attributed graph
𝐺 , and computing the expected reward (defined in (1)) using the average KPI values stored in𝐺 .
For the High-Throughput (HT) agent, we expect this strategy to favor the eMBB slice.
• AR 2 - “Min-reward”: this strategy substitutes an action 𝑎𝑡 suggested by the agent and expected
to result in a high reward with an action 𝑎𝐺 from 𝐺 that is expected to yield a lower reward. For
the Low-Latency (LL) agent, we expect this strategy to favor the URLLC slice.
• AR 3 - “Improve bitrate”: similarly to “Max-reward”, this strategy replaces an action 𝑎𝑡 computed
by the DRL agent with an expected low reward with another action 𝑎𝐺 that is expected to deliver a
high tx_bitrate. We expect this strategy to always favor the eMBB slice for any agent.

With a slight abuse of notation, let 𝑟 (𝑏 (𝑎𝑡 )) be the reward computed from (1) where instantaneous
KPIs are replaced with their average values computed from the distributions stored in the attributes
𝑏 (𝑎𝑡 ) for the action 𝑎𝑡 . For all the strategies, we compare the expected reward 𝑟 (𝑏 (𝑎𝑡 )) that would
be achieved by taking action 𝑎𝑡 with the measured average reward avg𝑡−1𝑥=𝑡−𝑂−1 𝑟 (𝑎𝑥 ) we have
observed across the last 𝑂 time steps.

6 EXPERIMENTAL EVALUATION
In this section, we first describe the O-RAN platform used to validate EXPLORA in a broad range of
settings (§ 6.1). Then, we empirically evaluate EXPLORA explanations (§ 6.2) and benchmark its
ability to programmatically improve the agents’ behavior with ad-hoc adjustments (§ 6.3).

6.1 O-RAN Testbed and Setup Description
We leverage the open-source OpenRAN Gym framework [6] to deploy a reference O-RAN archi-
tecture (as that of Figure 6) with our custom xApps and perform data collection. If features an
O-RAN-compliant near-RT RIC [58]; instances of the E2 interface to connect the RIC and the RAN;
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Algorithm 1 Strategies for intent-based action steering
Require: 𝐺 = (𝑁, 𝐸, 𝐵); action suggested by the agent 𝑎𝑡 ; previous action 𝑎𝑡−1; 𝑂 ; Steering strategy 𝛼 ∈
{AR 1,AR 2,AR 3}

1: 𝜔 ← Result of 𝑟 (𝑏 (𝑎𝑡 )) < avg𝑡−1𝑥=𝑡−𝑂−1 𝑟 (𝑎𝑥 )
2: if (𝜔, 𝛼) == (True,AR 1) OR (𝜔, 𝛼) == (False,AR 2) OR (𝜔, 𝛼) == (True,AR 3) then
3: if 𝑛𝑡−1 ∈ 𝑁 then
4: Initialize 𝑄 ← ∅
5: Mark 𝑛𝑡−1 as visited, add 𝑛𝑡−1, 𝑏 (𝑎𝑡−1) to 𝑄
6: for each neighbor𝑤 of 𝑛𝑡−1 do
7: if 𝑤 is not visited then
8: Mark node𝑤 as visited
9: 𝑎 ← Action corresponding to node𝑤
10: Add𝑤,𝑏 (𝑎) to 𝑄
11: Execute procedure 𝛼 ∈ {AR 1,AR 2,AR 3}
12: else
13: Send 𝑎𝑡 to RMR
14: procedure AR 1: “Max-reward”(𝑄 ,𝑎𝑡 )
15: 𝑎𝑚𝑎𝑥 = argmax𝑎{𝑟 (𝑏 (𝑎)) : 𝑏 (𝑎) ∈ (𝑤,𝑏 (𝑎)) ∈ 𝑄}
16: if 𝑟 (𝑏 (𝑎𝑚𝑎𝑥 )) > 𝑟 (𝑏 (𝑎𝑡 )) then
17: 𝑎𝑡 ← 𝑎𝑚𝑎𝑥

18: Send 𝑎𝑡 to RMR
19: procedure AR 2: “Min-reward”(𝑄 ,𝑎𝑡 )
20: 𝑎𝑚𝑖𝑛 = argmin𝑎{𝑟 (𝑏 (𝑎)) : 𝑏 (𝑎) ∈ (𝑤,𝑏 (𝑎)) ∈ 𝑄}
21: if 𝑟 (𝑏 (𝑎𝑚𝑖𝑛)) < 𝑟 (𝑏 (𝑎𝑡 )) then
22: 𝑎𝑡 ← 𝑎𝑚𝑖𝑛

23: Send 𝑎𝑡 to RMR
24: procedure AR 3: “Improve bitrate”(𝑄 ,𝑎𝑡 )
25: 𝑗 ← Index of tx_bitrate KPI in the attributes 𝑏 (·) ∈ 𝐺
26: 𝑎𝑏𝑟 = argmax𝑎{𝑏 𝑗 (𝑎)) : 𝑏 𝑗 (𝑎) ∈ 𝑏 (𝑎) ∈ (𝑤,𝑏 (𝑎)) ∈ 𝑄}
27: if 𝑏 𝑗 (𝑎𝑏𝑟 )) > 𝑏 𝑗 (𝑎𝑡 )) then
28: 𝑎𝑡 ← 𝑎𝑏𝑟
29: Send 𝑎𝑡 to RMR

integrates gNBs and UEs from open-source software-defined 3GPP stacks (specifically, we used
srsRAN BSs and UEs for this study); and features stubs for xApps that can be extended to implement
the desired control functionalities, i.e., EXPLORA and the DRL agents.

We deployOpenRANGym components in Colosseum, awireless emulation testbedwith hardware
in the loop [52]. Colosseum provides 128 pairs of programmable compute nodes with a white-box
server and a software-defined radio (NI/Ettus USRP X310). These nodes can be remotely accessed
by researchers to run experiments on a catalog of scenarios capturing diverse path loss, shadowing,
and fading conditions extracted from real-world wireless environments.

For this work, we consider an urban scenario with 42 UEs and 7 BSs whose locations are extracted
from the OpenCelliD database [70] to match that of a real cellular deployment in Rome, Italy. Users
are deployed uniformly near the BSs, which offer connectivity via a 10MHz radio channel with
a sub-carrier spacing of 15 KHz. Each UE is assigned to a network slice (i.e., eMBB, mMTC, and
URLLC) and receives traffic according to the slice it belongs to. Specifically, we use Colosseum’s
traffic generator (based on MGEN [71]) to generate two traffic profiles. In the first one (TRF1),
eMBB UEs receive 4 Mbit/s constant bitrate traffic in DWL, while mMTC and URLLC UEs receive
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Fig. 7. Detailed explanations for the HT agent’s behavior

a Poisson traffic in DWL with average 44.6 kbit/s and 89.3 kbit/s, respectively, as in [60]. TRF1
is used for generating the training dataset and for live experiments. The second profile (TRF2)
features 2 Mbit/s constant bitrate traffic for eMBB, and 133.9 kbit/s and 178.6 kbit/s Poisson traffic
for mMTC and URLLC, respectively.
Table 3 (in the Appendix A) lists the complete set of experiment configurations. All run for

30 minutes. The experiments on the left portion of the table are used in § 3.2 and in § 6.2. The
experiments on the right portion of the table are used in § 6.3 and run with an additional online
training phase, which helps agents adapt to a change in the environment. Overall, we run 28 hours
of experiments in Colosseum to gather the data for all the 40 experiments in Table 3. This adds to
the more than 150 hours of data collection for the offline dataset used to train the DRL agents.

6.2 System Explanations
We distill post-hoc explanations for the HT and LL agents. Without loss of generality and due to
space limitations, Figure 7 reports the case of TRF1 for the HT agent only (the resulting graph for
agent HT is shown in Appendix B). However, the corresponding discussion related to the agent LL
is given in Appendix C. Unlike SHAP, which takes 26 h to generate non-intuitive explanations for
experiments with 4+ users (see § 3.2), EXPLORA takes on average only 2.3 𝑠 to generate, process the
graph and synthesize the intuitive explanations relating actions to KPIs variation (40695× faster).
EXPLORA provides explanations by breaking down at the level of individual KPIs the effect of

transitions between multi-modal actions. As actions have two modes, we find in 𝐺 the following
categories of transitions: (i) “Same-PRB” is a transition between actions with the same PRB al-
location, (ii) “Same-Sched.” is a transition between actions with the same scheduling policy, (iii)
“Distinct” is a transition between actions with different PRB allocation and scheduling policies, and
(iv) “Self” denotes no transition, i.e., the same action is repeated in two subsequent steps.

Figure 7 provides domain experts with the required information to understand how agents
operate. Each point of the scatter plots represents a KPIs variation observed from state 𝑠𝑡 to
𝑠𝑡+1 determined by the transition from action 𝑎𝑡−1 to action 𝑎𝑡 . Overall, “Distinct” transitions
produce large variations of DWL_buffer_size while “Same-PRB” triggers lower DWL_buffer_size
variations with no change in tx_bitrate (see Figure 7(a)). Across all agents and settings, “Self”
and “Distinct” transitions are respectively around 5% and 50% of the total.
To simplify the results in Figure 7 for non-expert users, we summarize concise explanations

that generate new knowledge about the reason why the agents use the different categories of
actions. In other words, EXPLORA spots the intertwined relation between KPIs and how actions
determine their change. Figure 8 and Table 2 show such summary in a more human-friendly form.
Specifically, Figure 8 is obtained by constructing a DT on the data shown in Figure 7 (i.e., the
outcome of EXPLORA) and not on the agent itself. As discussed in § 4.1, this is necessary as DTs
perform poorly if applied directly to the agent. The new knowledge is generated by tracing the
decisions taken at each branch while traversing the tree from the root to the leaves. This process
pinpoints the decision-making criteria of the agent for a given category of action transitions. If
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the same category appears in more than one leaf, then the decision-making process is complex
and the same class applies to different KPI variations. Surprisingly, the agent uses “Same-Sched”
to reduce the throughput (i.e., tx_bitrate, see the node on the left branch of the DT) and the
number of tx_packets (on the right branch of the DT, which corresponds to the bottom left point
in Figure 7(c). The agent uses “Same-PRB” to sustain current throughput by using actions that
produce minor variations in the other KPIs (tx_packets and DWL_buffer_size), and uses “Self”
when it does not observe any variation KPIs. Unlike Figure 7, Figure 8 and Table 2 deliver intuitive
explanations that are effective to shed light on the agent’s behavior.

tx_packets ≤ −51.855
gini = 0.567
samples = 21
class = Distinct

tx_bitrate ≤ −1.035
gini = 0.375
samples = 4

class = Same-PRB

gini = 0.0
samples = 1

class = Same-Sched.

gini = 0.375
samples = 3

class = Same-PRB
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gini = 0.381
samples = 17
class = Distinct

tx_bitrate ≤ −0.005
gini = 0.305
samples = 16
class = Distinct

gini = 0.0
samples = 8

class = Distinct

tx_bitrate ≤ 0.005
gini = 0.469
samples = 8

class = Distinct

gini = 0.0
samples = 3
class = Self

gini = 0.0
samples = 5

class = Distinct

gini = 0.0
samples = 1

class = Same-Sched.
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Same-PRB
Same-Sched.
Distinct
Self

Fig. 8. DT on EXPLORA explanations for the HT agent

Table 2. HT agent: summary of explanations

Transition Interpretation
Same-PRB Produces minor changes in KPIs

Same-Sched. Diminishes tx_bitrate, other KPIs
augment/diminish according to the
previous state

Distinct Increases tx_bitrate, other KPIs
augment/diminish according to the
previous state

Self No change in KPIs

6.3 Ad-hoc Adjustments
We now illustrate how explanations can steer the decision-making process toward desired goals
defined as intents. To this end, we implement the three policies described in § 5.2 within the Improve
module of EXPLORA and benchmark their capability in reducing the DWL_buffer_size for the LL
agent (“Min-reward” or AR 2, in Figure 9) and improve tx_bitrate for the HT agent (“Max-reward”
or AR 1, and “Improved bitrate” or AR 3 in Figure 10). We also show the corresponding counterpart
effect on the other KPIs. We derive the distribution of the KPIs once𝐺 is made available after online
training and compare against a baseline without action change.
“Max-reward” and “Improved bitrate” provide different levels of bitrate improvement (see Fig-

ure 10): the latter is a more aggressive strategy because it explores the graph looking for first-hop
nodes with bitrate attributes directly. On the contrary, “Max-reward” changes action solely on the
basis of the expected reward that a given first-hop node would provide. The “Min-reward” strategy
is effective as it reduces significantly the tail of the buffer size occupancy with minor changes in
tx_bitrate, thus allowing for faster transmission of URLLC traffic (see Figure 9). Finally, we assert
that the intent-based action steering policies do not harm the capabilities of the agent to generalize
and adapt to changes in the systems (see § D).

7 DISCUSSION ON EXPLORA
Solving the Challenges. To summarize, the use of attributed graphs solves the challenges pre-
sented in § 3.3. It makes it possible to establish the “actions-outputs” link, thereby making the
decision-making process observable when it would not be otherwise (Challenge 1); avoids primary
cause and effect being undetermined because of memory (e.g., it determines whether an action is
mainly attributed to the past PRB allocation or to the change of KPIs) (Challenge 2); and enables
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understanding the implications of individual components of multi-modal actions by comparing the
distributions of KPIs (attributes) between transitions (edges) of interconnected nodes (actions) with
the same or distinct individual multi-modal component (Challenge 3).
Generalizability. We now comment on how EXPLORA can generalize within and outside O-RAN
networks, e.g., by interfacing with AI/ML algorithms running on the BSs directly, or on generic
network controllers not tied to O-RAN specifications. Further, we will discuss how EXPLORA
can be applied to nodes external to the RAN. The discussion holds as long as the general system
architecture is based on the use of autoencoders and DRL agents, and actions operate on two or more
variables as in [21, 28]. Both are examples of agents enforcing multi-modal actions in the RAN. The
multi-agent framework in [21] jointly determines BS selection and power requirement to maximize
user throughput during handovers. The agent in [28] observes the distribution of channel quality
indicators per user, amount of data to transmit, and traffic type as state 𝑠 and takes joint decisions on
user scheduling and antenna allocation with multi-modal actions 𝑎 that hierarchically (i) prioritize
users, (ii) decide the number of antennas per user, and (iii) select a precoding algorithm that
maximizes spectral efficiency according to the above decisions. If applied to this agent, EXPLORA
would pinpoint the rationale for the three modes of the actions individually and any combination
thereof, e.g., which precoding algorithm is typically used by the high priority users or how many
antennas are typically allocated to regular users. Aside from O-RAN networks, EXPLORA can
be interfaced with WiFi access points in which DRL-based closed-control loops are enacted to
jointly tune parameters and configurations of the access point (e.g., a multi-modal action handling
power control and beam steering). In this case, network metrics and channel measurements (e.g.,
channel state information with other WiFi nodes) would be first passed through an autoencoder
(either running locally or hosted on an external controller) for dimensionality reduction, and then
forwarded to a DRL agent that computes control actions to be enforced at the WiFi access point.
Similarly to the previous case, EXPLORA can be set up to read the input to the autoencoder, and steer
the output of the DRL agent to tailor the network control to specific conditions and environment.
From Laboratory to Production Environments. EXPLORA can also be used to speed up the
transition of AI/ML solutions from laboratory to production-like environments. Indeed, xApps can
be first developed, pre-trained offline and tested in controlled laboratory environments, thus com-
plying to the O-RAN specifications. Then, they can be transitioned to production-like environments,
where they are used to manage complex and large networks. However, the very many production
environments where xApps are deployed might not always reflect the laboratory conditions where
they were originally pre-trained and tested. Hence, a tool such as EXPLORA can help steer the
actions, and adapt xApps to the novel environments with minimal online re-training, as it usually
happens for DRL agents to adapt to new environments [23, 60].

8 RELATEDWORK
The last years have seen a surge in the uptake of XAI for AI-based networking systems. Seminal
works [11, 80] opened the path forward to interpretability in networking contexts. Auric [49]
and NeuroCuts [44] rely on DTs that are self-interpretable AI models. AT&T developed Auric to
automatically configure BSs parameters while NeuroCuts performs packet classification with RL.
Unfortunately, and as mentioned earlier, DTs are not very effective in complex networking problem
such as the RAN.
XAI for Networking. XAI is at an early stage of conceptualization and adoption in mobile net-
works [16, 22, 40]. The lack of explainability leads to poor AI/ML model design, which might
facilitate adversarial attacks [15, 66, 78]. Metis [53] interprets diverse Deep Learning (DL)-based
networking systems, converting DNN policies into interpretable rule-based controllers and high-
lighting critical components. Metis works well when the relation between inputs and outputs is
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explicit, which does not address Challenge 1. The work in [79] uses a teacher-student framework
to improve robustness of DRL-based networks. The teacher infuses a set of white-box logic rules
defined by humans into a DRL-agent, i.e., the student. Specifically, the student maximizes the
expected cumulative reward while minimizing the distance to the teaching data. Unfortunately,
in complex systems like the RAN, defining white-box logic rules a priori may be prohibitively
time-consuming and inefficient.
The above research efforts still remain preliminary in regard to the design of explainability

techniques applicable to complex AI models (see § 3.3) for real networking systems. EXPLORA fills
precisely this gap for the Open RAN case.
Robustness. Ensuring model robustness is important and can be done through anomaly detec-
tion [24] or formal verification [12, 33]. Shielding is a safety mechanism that inhibits an agent from
taking a potentially risky actions provisioning DRL agents with an additional layer of robustness.
Shields may be constructed in post-training by programmatically determining forbidden actions [1],
or infer the dynamics of the system and preventing it from reaching hazardous states [4]. At
training times, shields can restrict the exploration of the state space [34] thereby limiting the agent
knowledge right from the start. By contrast, EXPLORA performs adaptive action-steering.

9 CONCLUSIONS
In this paper, we propose EXPLORA, a new framework to explain the class of resource allocation
DRL-based solutions for cellular networks. EXPLORA synthesizes model explanations that facilitate
monitoring and troubleshooting for domain experts. We showcase the benefits of EXPLORA in
a typical Open RAN scenario and apply it to a set of DRL agents executing as O-RAN xApps
that govern RAN slicing and scheduling policies. EXPLORA not only synthesizes clear and concise
explanations, but can also improve overall performance by using explanations to proactively identify
and substitute actions that would lead to low expected rewards programmatically.
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A EXPERIMENTAL CONFIGURATIONS

Table 3. The configurations utilized in the experiments
Agent Traf. Num. Users Action Steering Strategy (Users: 6, drop to 5)

Scen. 6 5 4 3 2 1 AR 1 AR 2 AR 3 Baseline

HT TRF1 CHT,trf1−6 CHT,trf1−5 CHT,trf1−4 CHT,trf1−3 CHT,trf1−2 CHT,trf1−1 CHT,trf1-a1-10, CHT,trf1-a1-20 CHT,trf1-a2-10, CHT,trf1-a2-20 CHT,trf1-a3-10, CHT,trf1-a3-20 CHT,trf1-b-10, CHT,trf1-b-20
TRF2 CHT,trf2−6 CHT,trf2−5 CHT,trf2−4 CHT,trf2−3 CHT,trf2−2 CHT,trf2−1 CHT,trf2-a1-10, CHT,trf2-a1-20 CHT,trf2-a2-10, CHT,trf2-a2-20 CHT,trf2-a3-10, CHT,trf2-a3-20 CHT,trf2-b-10, CHT,trf2-b-20

LL TRF1 CLL,trf1−6 CLL,trf1−5 CLL,trf1−4 CLL,trf1−3 CLL,trf1−2 CLL,trf1−1 CLL,trf1-a1-10, CLL,trf1-a1-20 CLL,trf1-a2-10, CLL,trf1-a2-20 CLL,trf1-a3-10, CLL,trf1-a3-20 CLL,trf1-b-10, CLL,trf1-b-20
TRF2 CLL,trf2−6 CLL,trf2−5 CLL,trf2−4 CLL,trf2−3 CLL,trf2−2 CLL,trf2−1 CLL,trf2-a1-10, CLL,trf2-a1-20 CLL,trf2-a2-10, CLL,trf2-a2-20 CLL,trf2-a3-10, CLL,trf2-a3-20 CLL,trf2-b-10, CLL,trf2-b-20

Table 3 shows the configurations C used in the experiments (§ 3.2 and § 6) for different agents
and different traffic scenarios. Overall, we run 48 different experiments. Each configuration in the
left part of the table refers to experiments with different numbers of users, e.g., the tuple “HT,tr1-6”
indicates a configuration C with the HT agent, traffic profile 1, and 6 users. Users are equally
assigned to each slice in the experiments with 6 and 3 users. For the experiments with 5, 4 and 2
users we use the following assignment:
• 5 users: 2 users to the slice eMBB, 1 user to the slice mMTC and 2 users to the slice URLLC;
• 4 users: 1 user to the slice eMBB, 1 user to the slice mMTC and 2 users to the slice URLLC;
• 2 users: 1 user to the slice eMBB, no users to the slice mMTC and 1 user to the slice URLLC.

The experiments with 1 user are executed three times, one for each of the the three slices eMBB,
mMTC, URLLC. The right part of the table refe5rs to the experiments with intent-based action
steering strategies (discussed in § 6.3), e.g., the tuple “HT,trf1-a1-10” denotes a configuration C with
the HT agent, traffic profile 1, policy replacement AR 1, and an observation window𝑂 of 10 entries.

B GENERATING ATTRIBUTED GRAPHS
With the help of an example, we now explain how EXPLORA builds the attributed graph for the
case of the agent HT and traffic scenario TRF1. We first provide a step-by-step explanation and
then show the overall graph.
In Figure 11, we show both nodes (i.e., the actions) and attributes during three consecutive

time steps 𝑡0, 𝑡1, and 𝑡2 in the observation window𝑊 . Two users per slice are present in the
system for a total of six users. Each node in the graph contains a multi-modal action. The node
([36, 3, 11], [2, 0, 1]) represents the RAN slicing PRB allocation on the left, i.e., [36, 3, 11] and sched-
uling policy allocation on the right, i.e., [2, 0, 1] (0 denotes Round Robin (RR), 1 - Waterfilling
(WF), and 2 - Proportional Fair (PF)). The positions inside the array refer to the slices. For example,
[36, 3, 11] denotes an allocation of 36 PRB to the slice eMBB, 3 to the slice mMTC, and 11 to the slice
URLLC. Each attribute in the graph contains the distribution of KPIs per slice of each user. For ex-
ample, SL0 [225,234] of the attribute tx_packets indicates that two users have transmitted 225 and
234 packets for the slice 0. At time 𝑡0, the agent enforces the action ([36, 3, 11], [1, 2, 2]). We record
in three different attributes, one per KPI (i.e., tx_bitrate, tx_packets, and DWL_buffer_size),
the corresponding data observation for each slice (i.e., SL0, SL1, and SL2) and for each user. These
attributes describe the impact of the action taken at 𝑡0 on the future state 𝑡0+𝛿 (with 𝛿 = 250 ms)
and that is taken as input by the DRL framework (autoencoder with DRL agent) to take action
([36, 3, 11], [2, 0, 1]) at 𝑡1. As this is a new action, EXPLORA adds a new node, monitors the future
state 𝑡1+𝛿 and records it in form of attributes. In the next iteration at 𝑡2, the agent takes again
the action ([36, 3, 11], [1, 2, 2]). This is not a new action, hence EXPLORA updates the existing
attributes recorded at 𝑡0+𝛿 with the new attributed at 𝑡2+𝛿 . Throughout𝑊 , the attributes build in
form of a distribution that contains as many samples as the occurrences of the action. The analysis
of the distributions for each KPI and slice between transitions allows to reveal the rationale for
which the agent changes action. For example, in the transition from 𝑡1 → 𝑡2, the tx_bitrate for
SL0 increases. Finally, in Figure 12, we show the complete graph and we only represent nodes and
not attributes for readability.
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Fig. 11. Process of building the attributed graph during time steps 𝑡0, 𝑡1 and 𝑡2
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Fig. 12. The resulting graph for the HT agent utilized in the presence of TRF1 traffic with a focus on actions
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Fig. 13. Detailed explanations for the LL agent’s behavior

C CONSIDERATIONS ON THE AGENT LL
Figure 13, Figure 14, and Table 4 show the process to obtain the summary of explanations for the
agent LL similarly to what Figure 7, Figure 8, and Table 2 represent for the agent HT. With respect
to the HT counterpart, the agent LL presents significant differences.
• First, the number and magnitude of KPI variations (for measurement units, refer to § 3.1) is, as
expected, lower for the LL agent than for the HT agent. Indeed, the latter agent strives to guarantee
high throughput for traffic flows with higher volume. The flows of the URLLC slice exhibit much
lower volume. Maximizing throughput is comparatively easier than striving to minimize the buffer
size (as proxy to low latency). This phenomenon can be observed in the higher number of transitions
that the LL agent performs if compared to its HT counterpart.
• Second, note that the LL agent shows a few outliers. These are transitions that generate an
unexpected explanation. For example, in Figure 13(c) the “Same-Sched.” transition denoted as outlier
is unexpected as all other transitions of such category usually lead to a decrease of tx_packets. We
attribute this behavior to the fact that while traffic is deterministic in terms of statistical behavior,
the actual instantaneous traffic load may deviate from the trend and thus produce outliers.
• Third, unlike the HT agent that mainly uses the “Same-PRB” class (40%), the LL agent uses the
two classes evenly.
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Fig. 14. DT on EXPLORA explanations for the LL agent
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Table 4. Summary of explanations for the LL agent

Transition Interpretation
Same-PRB Diminishes lightly tx_bitrate and augments

tx_packets
Same-Sched. Diminishes DWL_buffer_size, usually dimin-

ishes tx_packets and seldom marginally aug-
ments tx_packets

Distinct Mainly augments tx_packets
Self No change in KPIs

D FURTHER CONSIDERATIONS ON ACTION STEERING
We now assert that the intent-based action steering policies defined in § 5.2 do not harm the
capabilities of the agent to generalize and adapt to changes in the systems. Figure 15 portrays the
median, first and third quartiles of the distributions obtained across all configuration settings for
AR 1 (i.e., HT and LL agents, TRF1 and TRF2 traffic scenarios) and varying the size of the past
history 𝑂 . We report both the number of times the attributed graph 𝐺 “suggests” to replace an
action (purple bars), as well as the number of times such action is actually being replaced with
the one suggested by the graph (green bars). Lower values of 𝑂 trigger comparatively a slightly
higher number of action changes than higher values of 𝑂 (on average, 63% and 59%, respectively).
However, through action changes, the agent probes less often new actions in a fully controlled
fashion (the reduction between potentially used actions and those actually used is 25% for 𝑂 = 10
and 18% for 𝑂 = 20). The important remark from Figure 15 is that our intent-based action steering
strategies are not preventing the agent to take a specific action (like shielding would do) because it
is rare that the same action gets substituted more than 3 times. On the contrary, leveraging the
explanations, the same actions suggested by the graph as replacement are used more often.
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Fig. 15. Distribution of actions with AR 1
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