Improved Decision Module Selection for Hierarchical
Inference in Resource-Constrained Edge Devices

Adarsh Prasad Roberto Morabito Joerg Widmer Jaya Prakash
Behera University of Helsinki IMDEA Networks Champati

IMDEA Networks Helsinki, Finland Institute IMDEA Networks
Institute roberto.morabito@helsinki.fi Madrid, Spain Institute

Madrid, Spain
adarsh.behera@imdea.org

ABSTRACT

The Hierarchical Inference (HI) paradigm has recently emerged

as an effective method for balancing inference accuracy, data
processing, transmission throughput, and offloading cost.
This approach proves particularly efficient in scenarios in-
volving resource-constrained edge devices like micro con-
troller units (MCUs), tasked with executing tinyML inference.
Notably, it outperforms strategies such as local inference ex-
ecution, inference offloading, and split inference (i.e., infer-
ence execution distributed between two endpoints). Building
upon the HI paradigm, this work explores different tech-
niques aimed at further optimizing inference task execution.
We propose three distinct HI approaches and evaluate their
utility for image classification.

CCS CONCEPTS

« Computing methodologies — Distributed artificial
intelligence.

KEYWORDS

Edge Computing, Deep Learning, Hierarchical Inference.

!Funding Information

IThis work has been supported by Ministry of Economic Affairs and Digital
Transformation, European Union NextGeneration-EU, project TSI-063000-
2021-59, and through MSCA-PF project “DIME: Distributed Inference for
Energy-efficient Monitoring at the Network Edge” under Grant Agreement
No. 101062011

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ACM MobiCom ’23, October 2—6, 2023, Madrid, Spain

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9990-6/23/10...$15.00
https://doi.org/10.1145/3570361.3615732

joerg.widmer@imdea.org Madrid, Spain

jaya.champati@imdea.org

Meta data

(App. Qo5, SML, L L)

Inference _ Edge Server (ES)

HI Decision
Module

Data -

Offload
> ==
samples: N

L-ML

i}

(Higher accuracy)

Simple
sample

Oulput inference

Edge Device (ED)

(Lower accuracy)

Figure 1: HI framework for DL inference at the edge.
1 INTRODUCTION

Machine Learning (ML) inference has become vital due to
its growing application, leading to research expansion, par-
ticularly at the network edge. Performing ML inference on
resource-constrained Edge Devices (EDs) is challenging be-
cause of limited computation and energy resources. Strate-
gies to overcome these include tinyML, edge intelligence
offloading to more powerful servers, and Deep Neural Net-
work (DNN) partitioning between an ED and an Edge Server
(ES). While these approaches can mitigate the challenges of
executing ML inference on EDs, they can introduce other
issues such as latency and increased communication costs.
Hierarchical Inference (HI) emerges as a novel framework
for distributed Deep Learning (DL) inference at the edge [1].
We consider a system in which an ED is equipped with a
tinyML model (referred to here as Small ML or S-ML) and
leverages ESc or cloud computing resources, where a state-
of-the-art large-size ML model (L-ML) is available. The HI
paradigm, shown in Fig. 1, offloads only complex data sam-
ples to the ES or cloud, classifying them based on the S-ML’s
inference requirements. Specifically, a data sample is deemed
simple data sample if S-ML inference suffices. Differently, a
complex data sample necessitates L-ML inference. The de-
cision module of HI utilizes the S-ML inference output to
determine whether a sample is complex or simple, and sub-
sequently, whether to offload it or not. Unlike traditional
tinyML research, HI introduces the flexibility of inference
offloading. It scrutinizes the S-ML inference first before de-
ciding whether offloading is necessary, in contrast to existing
inference offloading algorithms [5]. With HI, it is possible to
take advantage of the resource efficiency of S-MLs on EDs

https://orcid.org/0000-0001-7220-5353
https://orcid.org/0000-0001-7220-5353
https://orcid.org/0000-0002-4240-9934
https://orcid.org/0000-0001-6667-8779
https://orcid.org/0000-0002-5127-8497
https://orcid.org/0000-0002-5127-8497
https://doi.org/10.1145/3570361.3615732

ACM MobiCom ’23, October 2-6, 2023, Madrid, Spain

while maintaining the option to utilize more robust, state-of-
the-art L-MLs. However, HI can be implemented effectively
if the S-ML fulfills certain conditions: (i) the size of S-ML
should be small enough for seamless execution on EDs, (ii)
the energy required for S-ML inference should be lower than
that needed for transmitting a data sample, and (iii) the ac-
curacy of S-ML should be such that the proportion of simple
data samples exceeds that of complex data sample.

Another critical challenge in the implementation of HI
is the identification of complex data samples for offloading.
Previous research on HI [1] used a threshold on the high-
est softmax value from the final layer of the tinyML model
embedded in the ED. However, they had to offload more
than 35% of total data samples for CIFAR-10 image classifica-
tion, which increased the cost per image significantly. While
HI improves accuracy, its potential can be further tapped
through better differentiation of complex and simple data
samples. In this work, false negatives (FN) are mistakenly of-
floaded simple samples, and false positives (FP) are complex
ones that are not offloaded. Both add to cost (energy/delay),
so minimizing them is crucial for optimal performance. We
propose three novel HI approaches to differentiate these sam-
ples, evaluating performance with a state-of-the-art tinyML
model for CIFAR-10 classification.

2 PROPOSED METHODOLOGIES

We explore different approaches aimed at overcoming these
limitations and increasing the effectiveness and utility of
the HI paradigm: (i) calibration of tinyML model with fixed
threshold, (ii) use of classical ML classifiers after tinyML in-
ference, and (iii) use of classical ML classifiers before tinyML
inference. In this work, we use simple ML classifiers like
Logistic Regression (LR), Support Vector Machine (SVM) or
Random Forest (RF) due to the limited memory constraints
of MCUs used as EDs in our resource constrained set up as
DNNs require much more resources. A customized ResNetv1
developed by the MLPerf group [2] is used as our S-ML
model on the ED. The model’s size is 311 KB, with an im-
pressive benchmark accuracy of 85%, making it the ideal
choice for our experiments. Moreover, we have considered
a pre-trained ViT-H/14 [3] with a test accuracy of 99.5% as
our L-ML model present on the cloud or ES.

2.1 Model Calibration with Fixed Threshold

Confidence calibration in probabilistic ML models reflects of
the congruence between model predictions and the actual
probabilities or levels of confidence [6]. ML models often
exhibit overconfidence [4], which results in incorrect predic-
tions. Calibration can be be mathematically defined as:

P(G=ylp=p)=p, Vpe[01] (1)

Adarsh Prasad Behera, Roberto Morabito, Joerg Widmer, and Jaya Prakash Champati

Before Calibration: ECE = 0.0373 After Calibration: ECE = 0.0056

°

°
®

Mean Accuracy
Mean Accuracy
° °
S S

Confidence (p) Confidence (p)

(a) Before Calibration (b) After Calibration
Figure 2: Mean Accuracy vs Confidence in each bin
with respective ECE before and after calibration.

For B = 0.5 (The cost per image for Full offload is .505)

100.0{

o 022
9751 s

95.01 P

°
3

925 e - E’W ’

-+~ No Offload

°
&

90.01 s

8751 FE &

°
&

Accuracy (in %)
Cost per image

85.01 pa

No Offload e
Full Offload i einl
80.0 012

00 02 08 0o 02 08

°
=

8251

S
LI

0.4 o. 04 06
Threshold (8) Threshold (6)

(a) Accuracy vs threshold () (b) Selection of 8* for § = 0.5
Figure 3: Optimal threshold (0*) selection.

where y and g represent ground truth and predicted class of
any data sample respectively and p represents the confidence
of the neural network (NN) for that particular prediction. In
this approach, we calibrate the tinyML model using "Tem-
perature Scaling” [4] to make the probability estimates more
reliable and decide an optimal threshold 8" for offloading
decisions with minimal FPs and FNss.

To estimate the expected accuracy from finite samples,
we group predictions into 10 interval bins (each of size 0.1).
Fig. 2 shows the tinyML model’s mean accuracy relative to
each bin’s confidence. As discussed earlier, the energy con-
sumption per tinyML inference (denoted as), is considered
negligible compared to the energy consumption associated
with offloading each sample to the ES or cloud (represented
by B, here § = 0.5) and the cost of an incorrect inference
(denoted as y, here y = 1). Fig. 3 shows the optimal threshold
(67) selection, based on the cost per image for a fixed value
of f=0.5.

2.2 Use of Classifiers after TinyML

In this approach, all images are processed at the ED. The
tinyML’s softmax layer provides probability estimates, which
are learned by conventional ML classifiers like LR, SVM,
and RF on the edge device. The offloading decision is made
based on these estimates. At first, the tinyML is trained on
50000 training data and tested on the rest 10000 images. The
complex data samples are identified in these 10000 images
and correspondingly assigned a class (e.g. class 1) and the
rest of the data samples are assigned another class (e.g. class
0). Due to significant class imbalance, down-sampling is
performed on simple samples. These images are divided into

Improved Decision Module Selection for HI in Resource-Constrained EDs

ACM MobiCom ’23, October 2-6, 2023, Madrid, Spain

Cost per image
o
o
G
Accuracy

0.2 0. 0.6 0.8
Cost for a single offload ()

(a) CPI for HI classifiers after tinyML

1.0 TinyML FT CFT LRA SVMA RFA L-ML
Methods Methods

(b) Accuracy comparison

0.9309 0.9312

F1 Score

FT CFT LRA SVMA RFA

(c) F1 Score comparison

Figure 4: Comparative Performance Analysis of various approaches under HI classifiers after tinyML, when a — 0.

Forp =05

Cost per image
°

- Full Offload
- No Offload
- LRB
- SVMB
- RFB
LRA

0.0

LRB SVMB RFB. LRA
Cost of a single inference (a) / Cost of a single offload (B) Methods

(a) CPI comparison with (b) Accuracy comparison
LRA (8 = 0.5) with LRA
Figure 5: Comparative Performance Analysis of ML
algorithms before TinyML.

an 80 : 20 train-test ratio, and the classifiers are trained, with
the weights saved.

2.3 Use of Classifiers before TinyML

When « is significant compared to f3, identifying complex
samples in advance for offloading to the ES or cloud may
be beneficial. We train classifiers to detect complex samples
before tinyML inference, directly offloading them without ED
processing. The classifiers are trained on images to execute
a binary task, predicting whether samples are complex or
simple for the given tinyML.

3 RESULTS

Fig. 4 shows the performance of calibration with fixed thresh-
old (CFT) and ML classifiers after tinyML (LRA, SVMA, RFA)
to the fixed threshold method (FT) proposed previously [1].
For this case, we assume « is negligible with respect to f,
hence set « = 0. It can be observed from Fig. 4(a), as f
increases, the CPI increases initially for all the techniques.
However, after § reached 0.5, the CPI for FT and CFT stag-
nated while for the ML classifiers CPI increases linearly with
B. It can also be observed that for the majority of the region
(0.2 < p <£0.7) the CPI for LRA is the lowest. Furthermore,
in Fig. 4(c) it can be noticed LRA outperformed all other tech-
niques in terms of F1 score. Although the overall accuracies
of SVMA and RFA are a little higher than that of LRA as seen
in Fig. 4(b), LRA outperforms its counterparts due to a lower
number of offloads while also restricting the number of FP
and FN. In Fig. 5, we consider « is non-negligible relative

to f and present the comparative performance analysis of
ML classifiers (LRB, SVMB and RFB) before tinyML. Fig. 5(a)
shows CPI for varying a/f for a constant value of 0.5. It is
worth noting that as previously discussed one important as-
sumption for HI is the energy required for tinyML inference
should be lower than that needed for transmitting a data
sample or @ < f,Vp. In Fig. 5(a), it can be observed that the
CPI for each technique increases linearly with an increase in
a/p value. All three classifiers LRB, SVMB, and RFB perform
almost identically. Interestingly, compared to the classifiers
before tinyML, CPI for LRA is the lowest till a/f reaches 0.7.
There is a small margin 0.7 < a/f < 0.9, where classifiers
before tinyML techniques outperform their counterparts. As
a approaches f (for a/f > 0.9), CPI for full offload became
the lowest, suggesting it is better to offload all the data sam-
ples rather than doing any inference at the ED. The overall
system accuracy for each classifier before tinyML, compared
to logistic regression after tinyML, is shown in Fig. 5(b).

4 CONCLUSION AND FUTURE WORKS

In this work, we proposed three HI selection strategies aimed
at optimizing offloading performance. Experiments showed
that using logistic regression after tinyML (LRA) often pro-
duced the best outcome in HI, considering cost and F1 score.
In the future, we plan to embed these models into MCUs to
assess energy needs and validate accuracy in system imple-
mentations.

REFERENCES

[1] Ghina Al-Atat, Andrea Fresa, Adarsh Prasad Behera, Vishnu Narayanan
Moothedath, James Gross, and Jaya Prakash Champati. 2023. The
Case for Hierarchical Deep Learning Inference at the Network Edge. In
Proceedings of the 1st International Workshop on Networked Al Systems.
Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman,
Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian
Ahmed, Danilo Pau, et al. 2021. Mlperf tiny benchmark. arXiv preprint
arXiv:2106.07597 (2021).

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
ICLR.

[2

—

[3

=

ACM MobiCom ’23, October 2-6, 2023, Madrid, Spain Adarsh Prasad Behera, Roberto Morabito, Joerg Widmer, and Jaya Prakash Champati

[4] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On offloading scheme for dependent IoT application. IEEE Transactions on
calibration of modern neural networks. In ICML. PMLR, 1321-1330. Wireless Communications 21, 9 (2022), 7222-7237.
[5] Han Xiao, Changgiao Xu, Yunxiao Ma, Shujie Yang, Lujie Zhong, and [6] Xu-Yao Zhang, Guo-Sen Xie, Xiuli Li, Tao Mei, and Cheng-Lin Liu. 2023.

Gabriel-Miro Muntean. 2022. Edge intelligence: A computational task A survey on learning to reject. Proc. IEEE 111, 2 (2023), 185-215.

	Abstract
	1 Introduction
	2 Proposed Methodologies
	2.1 Model Calibration with Fixed Threshold
	2.2 Use of Classifiers after TinyML
	2.3 Use of Classifiers before TinyML

	3 Results
	4 Conclusion and Future works
	References

