
High-speed Machine Learning-enhanced Receiver
for Millimeter-Wave Systems

Dolores Garcia†⋆, Rafael Ruiz†⋆, Jesus O. Lacruz†, Joerg Widmer†
† IMDEA Networks Institute, Madrid, Spain

⋆ Universidad Carlos III de Madrid, Madrid, Spain
E-mails: †{firstname.lastname}@imdea.org

Abstract—Machine Learning (ML) is a promising tool to
design wireless physical layer (PHY) components. It is par-
ticularly interesting for millimeter-wave (mm-wave) frequencies
and above, due to the more challenging hardware design and
channel environment at these frequencies. Rather than building
individual ML-components, in this paper, we design an entire
ML-enhanced mm-wave receiver for frequency selective chan-
nels. Our ML-receiver jointly optimizes the channel estimation,
equalization, phase correction and demapper using Convolutional
Neural Networks. We also show that for mm-wave systems, the
channel varies significantly even over short timescales, requiring
frequent channel measurements, and this situation is exacerbated
in mobile scenarios. To tackle this, we propose a new ML-
channel estimation approach that refreshes the channel state
information using the guard intervals (not intended for channel
measurements) that are available for every block of symbols in
communication packets. To the best of our knowledge, our ML-
receiver is the first work to outperform conventional receivers
in general scenarios, with simulation results showing up to 7
dB gains. We also provide an experimental validation of the
ML-enhanced receiver with a 60 GHz FPGA-based testbed with
phased antenna arrays, which shows a throughput increase by a
factor of up to 6 over baseline schemes in mobile scenarios.

Index Terms—Machine Learning, Millimeter Wave, Channel
Estimation, Physical Layer, Equalization

I. INTRODUCTION

Machine Learning (ML) technology has shown great ad-
vances over the last decade, mainly due to the abundant and
affordable high-performance computation engines that allow
fast training of large neural networks. In wireless systems, ML
has been extensively used at high network protocol layers, for
example for traffic prediction, blockage prediction or anomaly
detection [1–3], where ML techniques often outperform clas-
sical algorithms. Recently, several works showcased that ML
is also suitable to design components of the wireless physical
layer (PHY) [4–12]. Their main motivation is that conventional
PHY layers are composed of highly optimized but sepa-
rate signal processing blocks such as modulator/demodulator,
equalizer, demapper, etc. This block-wise design facilitates
implementation and modularity, but does not always result
in optimum performance. Furthermore, these blocks are often
designed under the assumption of linear processes without
considering potential non-linearities and residual errors due
to the interaction among blocks. Also channel tracking over
short timescales is usually not a main concern in these designs.
Such issues become more relevant at higher frequencies, in

particular the millimeter-wave (mm-wave) band and at THz
frequencies, where the high frequency induces channel fluctua-
tions even in static scenarios, device complexity increases, and
miniaturization makes hardware imperfections more complex
and harder to model.

Designing high-performance RF components is more com-
plex at mm-wave frequencies, and ML-based systems can in-
herently learn how to cope with imperfections. Achieving high
gains with small mm-wave components is difficult, and they
are more susceptible to noise and deviations. Giga-sampling
rate AD/DA converters for wide-band channels often have
limited resolution to avoid excessive complexity and power
consumption, which introduces non-negligible quantization
effects [13]. The directional antenna arrays used in mm-wave
systems to compensate for the high path loss require complex
calibration methods to ensure matching between phase shifters
and amplifiers of antenna elements [14, 15]. Future THz-
frequencies systems further exacerbate this situation, making
ML a highly attractive tool to design and optimize the PHY.

While several prior works demonstrate that using ML for
the wireless PHY is beneficial [7, 8, 10, 11, 16], only few
have studied full ML-based receiver architectures [12, 17, 18].
These works focus only on sub-6 GHz Orthogonal Frequency-
Division Multiplexing (OFDM) systems. DeepRX [17] and
its MIMO extension [18] are Convolutional Neural Network
(CNN)-based receivers for OFDM that use the received signal,
raw channel estimate, and received pilots as inputs. The
receiver network perform channel estimation, equalization and
demapping jointly. In [12], a similar design for MU-MIMO is
presented, that improves second order statistics of the channel
estimation to jointly optimize equalization and demapping.
These architectures substitute one or multiple blocks of the
PHY. While showing potential for performance gains over
traditional receivers, they only outperform conventional mini-
mum mean square error (MMSE) baselines under interference.

For the higher frequency mm-wave systems we focus on,
Single Carrier (SC) PHY designs become more practical due
to OFDM’s high peak-to-average power ratio [19, 20], which
requires a more power-hungry power amplifier to maintain the
same communication range [21]. OFDM systems also have
strong spectral leakage, strict synchronization procedures, and
are more sensitive to Carrier Frequency Offset (CFO), all of
which are more difficult to manage at high frequencies. Given

the sparse mm-wave multi-path environment, SC systems
perform well and have a less complex implementation [20].

We propose a complete SC mm-wave ML-enhanced receiver
architecture (ML4RX) that embraces both hardware imperfec-
tions and channel variability. We first present an ML-enhanced
receiver architecture that performs classical MMSE equaliza-
tion [22] and only uses a CNN network to optimize the symbol
demapper. This network takes a full block of data symbols
and the estimated channel as inputs and then outputs the log-
likelihood-ratio (LLR) of the transmitted bits. We then enhance
the receiver architecture with an ML-based channel estimation
and tracking mechanism. We base our design on two observa-
tions: i) the channel measurements degrade rapidly over time
not only for mobile but even for static scenarios, and ii) SC
mm-wave systems prepend and append Guard Intervals (GIs)
to blocks of data symbols [23, 24]. Those help to implement
low complexity frequency-domain equalization as well as to
compensate for residual CFO and phase impairments. We can
thus take advantage of these periodic GI sequences to enhance
the channel estimate, which is (commonly) obtained only
once from the preamble of a received packet. By introducing
the GI information into our ML pipeline, we obtain (coarse)
periodic channel updates without any additional overhead. The
enhanced channel estimation procedure allows to interpolate
the channel over time and provides updated information about
changes in the multi-path profile. We feed both the channel
estimate from the preamble and the coarse measurements from
the GIs together with the received data to the ML-enhanced
receiver to perform joint channel estimation, equalization, and
demapping.

To train and validate our proposed receiver architecture,
we generate datasets using the Quadriga [25] software, that
allows to generate realistic channel impulse responses with
time evolution. We also evaluate our system using real mea-
surements with an FPGA-based testbed with 60 GHz phased
antenna arrays [26]. As a critical requirement for a practical
system, we demonstrate that the ML training does not need to
cover the whole environment, i.e., training with some repre-
sentative receiver trajectories in the environment is sufficient.
The performance of the different experiments is evaluated
using the bit error rate (BER) and throughput as metrics. The
evaluation shows up to 7 dB gain for coded and uncoded data
transmissions which results in throughput gains of up to 12%
in static scenarios and 620% in mobile scenarios.

This paper makes the following contributions:
• Our design is the first ML-receiver pipeline that generally

outperforms even MMSE receivers with perfect channel
knowledge. We show that ML4RX’s performance is closer
to that of the optimal Maximum Likelihood Sequence Es-
timator (MLSE) receiver that has exponential complexity,
while maintaining the low complexity of MMSE. The
performance improvement is due to jointly optimizing the
enhanced channel estimation together with equalization
and soft demapping to obtain soft bit information that
maximizes the BER. The improved channel estimate is
obtained using a neural network that merges the high-

resolution channel estimate from the preamble with the
coarse periodic channel information from GIs.

• We evaluate the receiver using real-world measurements
from an FPGA-based mm-wave transceiver platform. To
our knowledge, our static and mobile experiments are the
first real-world evaluation of an ML-enhanced mm-wave
receiver, and they demonstrate that such a receiver archi-
tecture can significantly outperform conventional designs
in practice. Overall, we believe that our design and exper-
iments are crucial steps forward to bring ML-enhanced
PHY architectures to real-world wireless systems.

The paper is organized as follows. In Section II we introduce
the system model and baseline receivers. In Section III we
present the ML4RX architecture and its complexity. Practi-
cal implementation aspects are discussed in Section IV. We
compare the performance of our design to several baseline
schemes by simulation and testbed experiments in Sections V
and VI, respectively. We discuss the related work in Section
VII. Finally, we provide concluding remarks in Section VIII.

II. SYSTEM MODEL AND BASELINE RECEIVER

We first present the system model and standard baseline
receiver designs, their channel estimation methods, and com-
plexity.

A. System model

We consider an SC system and a frequency selective channel
with inter-symbol interference (ISI). The received signal yr is

yr[n] =

M−1∑
l=0

h[l]x[n− l] + v[n] n = 0, . . . ND − 1 (1)

where yr ∈ CND is the received data block of length ND,
h[l] ∈ C are the channel coefficients, M is the length of
the channel impulse response, x ∈ CND are the transmitted
symbols, and v is thermal noise at the receiver.

B. Baseline receivers

At the receiver, communication packets are usually detected
using a preamble composed of known sequences. The pream-
ble is also used to estimate and correct CFO and to perform
synchronization. Finally, specific parts of the preamble allow
to estimate the channel and specifically to extract the Channel
Impulse Response (CIR). Without loss of generality, in this
paper we focus on mm-wave systems that use Golay sequences
for this purpose, but the CIR can also be estimated with other
sequences with suitable correlation properties.

1) Equalization: The estimated CIR ĥ is used for equal-
ization. We consider both MMSE and MLSE.
• Frequency domain MMSE equalization: For a frequency
selective channel, the equalization is usually performed in
the frequency domain, as the implementation is less costly
in hardware. In the frequency domain, Eq. (1) is equivalent to
the product of the ND-point discrete Fourier transform (DFT)
of the transmitted signal and the channel response

y[k] = h[k]x[k] k = 0, . . . , ND − 1 . (2)

The MMSE equalization utilizes an estimate of the noise
variance σn to calculate the Channel State Information (CSI)

CSI[k] = h[k]h∗[k] + σn (3)

and therefore, the frequency domain equalization is obtained
using the channel estimates ĥ by computing

x̂ = IDFTND

{
y[k]ĥ∗[k]

CSI[k]

}
. (4)

• Maximum Likelihood Sequence Estimator: While MMSE is
used in practice due to its lower complexity, the optimum
decoding algorithm is MLSE [27, 28], which solves the op-
timization problem

min

ND∑
n=1

∣∣∣∣∣yr[n]−
M∑
l=1

h[l]x[n− l + 1]

∣∣∣∣∣
2

(5)

to find the most likely transmitted sequence. This problem can
be solved using the Viterbi algorithm [29, 30]. However, the
complexity of the Viterbi algorithm is exponential with the
length of the channel and is proportional to the constellation
size. Even sphere decoding together with the Viterbi algorithm
[31] has exponential worst case complexity.

2) Constellation demapping: The soft-decision approxi-
mate LLR method [32, 33] is used to extract soft bit informa-
tion from the equalized symbols using the maximum a pos-
teriori probability (MAP). The approximate LLR is obtained
using the max-log-MAP, a well known approximation of the
exact log-MAP demapping algorithm.

3) Guard intervals in SC high frequency communications:
GIs are used to compensate phase impairments and residual
CFO present in high frequency systems. GIs are interleaved
with blocks of data symbols, acting as a prefix to simplify
frequency domain equalization. In current high-frequency sys-
tems, the length of the data block (data symbols + GI) is
limited to a few hundreds of symbols in order to allow for
an efficient implementation of the Fast Fourier Transform
(FFT). Ideally, the length of the GI (NL) should be longer
than the maximum delay spread of the channel to avoid
ISI. Phase impairments are corrected by computing the phase
difference between two consecutive GIs and then correcting
the data symbols in between. Considering the relative short
delay spread of mm-wave channels and that the GI is mainly
used for phase estimation, a relatively short GI size is used in
practice, to avoid excessive overhead.

C. Baseline receiver complexity

The complexity of MMSE frequency domain equalization
scales with the data block size ND as O(N2

D). In contrast,
MLSE scales with the data block size and the constellation
order as O(ND2CM), where 2C is the constellation size and
M is the length of the channel impulse response. The demap-
ping complexity scales as O(NK2C), where NK = ND−NL

is the length of the data symbols after GI removal. Therefore
the total receiver complexity scales as O(N2

D+NK2C) for the
MMSE and O(ND2CM +NK2C) for the MLSE baselines.

III. ML4RX RECEIVER

We now detail the architecture of our ML-enhanced receiver
that jointly optimizes the components of a receiver: channel
estimation, equalization, and soft demapping. The network is
trained to output LLRs that minimize the BER of the system
and can be used in conjunction with a channel coding scheme.

We first consider a system with classical equalization,
replacing the demapper with a CNN block. Then, we extend
the system to use the GIs to obtain coarse-grained but up-
to-date channel estimates over the course of a packet. The
key intuition behind this is that the channel estimated from
the GIs can be merged with the outdated channel estimate
from the preamble to better track the evolution of the channel.
Since this improved channel estimation happens jointly with
equalization and demapping, the ML4RX receiver can learn
the best joint channel estimation, equalization, and demapper
for a given hardware and environment.

A. Training the ML4RX pipeline

The ML4RX receiver architecture is shown in Fig. 1. The
components with trainable weights are shown in blue. The
packets are sliced using a block separator, which splits the
packet into data blocks. Then, the receiver processes each data
block separately and jointly optimizes the channel estimation,
equalization, phase correction, and demapping. As shown in
the figure, the ML4RX receiver pipeline has three input arrays
as follows:

• tsr: are the received training symbols used to compute the
CIR estimate in the time domain, ĥ, with ĥ ∈ CND×1.

• gr: is the received GI for each data block. This is used to
compute the GI channel estimate ĥl ∈ CND×1, denoted
with an l since its knowledge of the channel is limited
by the size of the GI. The channel estimation using the
GI is explained in Section IV-C.

• yr: is the received data block, comprising the data sym-
bols and again the GI gr.

The outputs of the model are the estimated LLRs of each
received symbol, ˆLLR ∈ RNK×C , where C is the modulation
order. The LLRs can be converted to bit probabilities by apply-
ing the sigmoid function b̂ = sigmoid(ˆLLR). The trainable
parameters of the network θ are optimized to minimize the
total binary cross-entropy (BCE):

L =

NK−1∑
l=0

C∑
c=1

Eyr [bl,c log(Pθ(bl,c = 1|yr))+

(1− bl,c) log(1− Pθ(bl,c = 1|yr))]

(6)

where Pθ(·|yr) is the posterior distribution of the bits given
the received signal yr. The loss function is approximated using
Monte Carlo sampling by taking batches of data

L ≈ − 1

B

B∑
b=1

NK−1∑
l=0

C∑
c=1

Eyr [bl,c log(b̂l,c)

+(1− bl,c) log(1− b̂l,c)]

(7)

where B denotes the batch size.

Equalization
Data block k demapper

Phase
correction

Phase
estimation

Estimated
LLRs

ML Single Carrier

Receiver
FFT

Data block k channel es�ma�on

PredValM

ts

FFT

IFFT

Fig. 1: ML receiver architecture

Channel
Est. Trad

Channel
Est. GI

[n] n=0,…,

[n] n= +1,…
M

Data block k

channel es�ma�on

I

ts

Fig. 2: ML-enhanced channel estimation architecture

B. ML-enhanced channel estimation

As presented in Section II, the channel estimate accuracy
for data blocks near the preamble and then degrades over
time. This is particularly pronounced in case of mobility
or dynamic environments, but even static scenarios show
perceptible fluctuations in multi-path gains over time. We now
discuss the improved channel estimation block of the ML4RX
receiver pipeline that merges the channel estimates from the
preamble and the GIs as shown in Fig. 2. First, the channel
estimates are obtained from the preamble and the GI. Since the
GI is much shorter than the preamble, its channel estimate ĥl

contains fewer channel coefficients than ĥ. Also, for a GI of
length NL we only obtain NP = 0.5NL channel coefficients,
since the first coefficients are contaminated with symbols from
the previous block. Thus, the preamble channel estimate is
outdated but more accurate, whereas the GI channel estimate
is coarse but more up-to-date.

The improved channel estimation sub-block has two parts: i)
merging the coefficients seen by both the preamble and the GI
channel estimates up to NP , and ii) predicting the coefficients
that are not seen by the GI from the other data. To merge
the coefficients seen by both estimates, we design a CNN
denoted by CNNM . The CNN takes as inputs ĥl ∈ CNP×1

and ĥ[n] ∈ C with n = 0, . . . , NP and outputs ĥI [n] ∈ C
with n = 0, . . . , NP . Then, a prediction block formed by
linear layers PredV al is designed to get up-to-date estimates
of the channel coefficients not seen by the GIs. The CNN is
a single 1D convolutional layer to increase explainability, as
then the weights of the layer can directly be linked to the
coefficient that the network is assigning to both the channel
estimate from the GI and the preamble. The PredV al has as
input ĥl ∈ CNP×1 and ĥ[n] ∈ C with n = NP + 1, . . . , ND

and outputs ĥI [n] ∈ C with n = NP +1, . . . , ND, with output
dimension (ND−NP)×1. Finally, the channel estimate vectors
from both sets of layers are concatenated to form ĥI .

For equalization and phase correction, the results of the
improved channel estimation sub-block, ĥI , and the received
symbols, yr are converted to the frequency domain using FFT
and multiplied as in Eq. (2) which are ultimately converted

back to time-domain by computing an inverse Fourier trans-
form. A phase estimate is obtained from the received GI and
the known sequence of the GI as ϕerror = ∠(gr · GI), where ∠
is the angle of the complex number in polar coordinates. The
phase error between two consecutive GIs is δϕ = ϕ(1)−ϕ(0),
where ϕ(i) is the phase error of a given GI. Therefore, the
phase to correct each symbol is estimated by interpolating
between phase errors of different GIs, where we assume the
phase error is measured approximately at the center of the GIs.

Φ = ϕ(0)− δϕ(0)(1−
1

NL
(
NL

2
+ k)) (8)

where k = [0, . . . , ND]. Then, the equalized symbols se are
phase corrected as spe = see

−iΦ.

C. ML-enhanced demapper

Following the equalization and phase correction, the sym-
bols are inputted to the demapper block. As a result of
imperfect channel estimation, residual CFO and phase noise,
the symbols are distorted further than just thermal noise. A
traditional demapper, as described in Section II, is applied in
a per symbol manner, as the equalization should take care
of the ISI. As a consequence, these residual effects are not
considered and the demapper observes them as noise and
distortions in the data. In contrast, our architecture jointly
processes the data block of equalized symbols and this allows
to take into account and correct non-linearities, residual ISI
and other residual effects described above. The inputs to the
CNNDemapper are the real and imaginary parts of the vector of
equalized symbols spe of dimension 2×NK , after GI removal.
The outputs are the predicted LLRs of dimension NK × C.
The demapper sub-block is shown in Fig. 3. The architecture
is formed by ResNets [34] with 1D convolutions and kernels
of fixed size 3. We performed experiments with variable kernel
sizes but did not observe any significant gains.

D. Complexity

The complexity of the ML4RX channel estimation block
is of order O(N2

D), where CNNM has lower complexity
O(ND) and the Predval block has complexity of order
O(N2

D). Therefore, the equalization of the ML4RX receiver
has the same order of complexity as the MMSE equalization
that scales with the data block size, NK as O(N2

K). The
CNNDemapper complexity scales as O(NK2C), which is equiv-
alent to the order of complexity of the log-MAP demapper.
Therefore the total ML enhanced receiver complexity scales
as O(N2

D+NK2C), which is equal to the order of complexity
of the MMSE baseline with the log-MAP demapper.

…

R
es
n
et

La
ye
r

R
es
n
et

La
ye
r

Fig. 3: CNN Demapper subblock

TABLE I: CNN Demapper

CNNDemapper
Input size B × 2×NK

Parameters Filters Kernel
Conv 1D 32 3
Resnet 1 64 3
Resnet 2 64 3
Resnet 3 32 3
Conv 1D C 1
Output size B × C ×NK

NL GI symb

STF CEF

Preamble

HEADER

Ga64 Ga64 Ga64Ga64

DATA BFT

Ga64

tsr

NK Data
symbols

ND Data Block

NK Data
symbols

Fig. 4: IEEE 802.11ad frame structure

IV. IMPLEMENTATION

In this section, we cover the implementation details and
practical aspects of the receiver design.

A. Training strategy

The training is performed in two parts. First, the param-
eters from the CNNDemapper sub-block are trained while the
parameters from the improved channel estimation sub-block
are fixed, so that a good demapper is obtained for a given
equalization. Then the required gradients are inverted. The
reason for having two training steps is that the demapper
depends on the resulting equalized symbols and if these are
updated at every training step, the demapper sub-block does
not converge to the best solution.

Without loss of generality, let us consider the IEEE
802.11ad/ay standards [32, 33] as an example to calculate
the size of the training model. The frame structure for these
standards is shown in Fig. 4, where the block size ND is 512,
comprising NK = 448 data symbols and NL = 64 symbols
for the GI. Using those parameters, the model size of the
architectures presented in Section III is 200 kB. Such a small
model fits even into low-end devices.

B. CIR estimation in the preamble

Current systems using standards such as 802.11ad/ay use
complementary Golay sequences in the Channel Estimation
Field (CEF). The training symbols tsr in the CEF are used to
estimate the CIR. To this end, CIR estimation takes advantage
of the auto-correlation properties of complementary Golay
sequences [35]. The sum of the auto-correlation of a pair of
complementary Golay sequences GaN and GbN of length N
is the delta function δ[n]. This property makes these sequences
very suitable for multi-path estimation in noisy environments.
The CIR for each pair of complementary Golay sequences d
is given by:

hG,d[i] =
1

N

N−1∑
n=0

rCEF [i+ n]× G∗
N [n] ∀ d = 1, ..., D (9)

We denote by rCEF the CEF field of the received frame. D
is the number of repetitions of Golay sequences in the CEF
and {·}∗ is the complex conjugate operator. We use Eq. (9)
to determine hGa,d and hGb,d for Ga and Gb, respectively.
Finally, the estimated CIR is obtained by adding and averaging
hGa,d and hGb,d as follows:

ĥ =
1

D

D∑
d=1

(hGa,d + hGb,d) . (10)

C. CIR estimation using guard intervals

Apart from the functionality of the GI described in Section
II-B, the received GI (gr) can be used to obtain a CIR
estimate. Since there is a GI in every data block, this permits
obtaining CIR estimates at regular short intervals. The number
of channel coefficients to be estimated, NP , is limited by half
of the length of the GI (NL), which in turn limits the accuracy
of the estimated CIR since only NP taps can be observed. NP

may be smaller than the actual number of channel coefficients,
if the delay spread of the channel is longer than half a GI. Also,
note that in IEEE 802.11ad/ay systems, the GI corresponds to
Ga64 Golay sequences (without complementary sequences),
which makes channel estimation noisier and more challenging.

The channel estimate is obtained as follows. The n-th
element of received GI can be written as

gr[n] =

NP∑
l=0

h[l]g[n− l] + v[n] n = 0, . . . NL (11)

where g[n] are GI elements, hl is the vector of limited channel
coefficients to be estimated and v is the thermal noise from the
receiver and inter-symbol interference in case NP is smaller
than the real number of paths. The first received element we
can use is gr[NP] as the first NP guard symbols could include
contributions from the previous data blocks due to multipath
components. In matrix form, the system of equations can be
written as

gr = Ghl + w (12)

where G is the matrix with the m-th row equal to Gm =
[g[NP +m− 1], . . . , g[m− 1], g[m]]. In order to obtain the
estimated channel ĥl we solve the least-squares problem

ĥl = min
hl

||gr −Ghl|| . (13)

V. EVALUATION BY SIMULATION

We now evaluate the proposed receiver architecture against
the baselines presented in Section II in a simulation setup. This
allows us to thoroughly study its performance under different
conditions and separate the impact of the different components
while having ground truth for the channel realizations. First,
we introduce the simulation setup and explain the dataset
generation process. Then, we evaluate the results.

A. Simulation setup

In order to evaluate the performance of our receiver, we
generate channel realizations using the Quadriga software
[36]. Quadriga allows to generate realistic channel impulse
responses with time evolution. For the simulations, we focus
on the downlink mmMagic Urban Microcell Non-Line of
Sight scenario [25]. The transmitter and receiver have dipole
antennas and the center frequency is 60 GHz.

To be able to compare the ML-enhanced receiver to the
maximum likelihood scheme, MLSE, the coefficients of the
channel are generated with only 4 taps. A tap is an element
of the channel’s impulse response. If the number of taps is
larger, the trellis has more than 220 states and the complexity
becomes too high to determine the MLSE solution even on a
large GPU server. A trellis is a directed graph that describes
systems with memory and it is used in the Viterbi algorithm to
solve the maximum likelihood MLSE minimization problem.
The positioning of these taps is defined by their delay spread
and angular spread. The angular spread has values around 20-
90◦ and the delay spread has a log-normal distribution with a
mean of 16 ns and standard deviation of 2 ns, which are typical
values for mm-wave. We consider the following scenarios:

1) NLOS comparison to baseline schemes: The receiver
is placed at a distance of 2 m from the transmitter and
follows a linear trajectory away from the transmitter with an
angle of π/8. The channel model is the Quadriga model for
NLOS. The channel at the initial point of the trajectory, h0,
is considered as the channel estimated by the preamble. A
second channel, h0.5ms, obtained using the continuous-time
evolution in Quadriga, is obtained 0.5 ms later (∼ half the
coherence time). The following data blocks are processed
with h0.5ms and a channel estimate is obtained using the GI
ĥ0.5ms,l. Separate training sets are produced for each Signal-
to-Noise Ratio (SNR). We generate 1000000 pairs of channel
realizations and each dataset consists of randomly generated
bits modulated with 16 QAM and propagated through these
channels. We study the performance of uncoded and coded
data at different rates.

2) NLOS evolution over time: To study the evolution of
the BER using the different methods over time, we fix the
SNR and generate sets of channel realizations for up to 1
ms, as after 1 ms the BER of the data blocks equalized
with the channel estimated from the preamble of 1 ms before
decreases by several orders of magnitude. The receiver follows
random linear trajectories away from the transmitter starting
at a distance from 3 to 10 m. Again, we generate 1000000
sets of channel realizations, and send randomly generated bits
modulated with 16 QAM through these channels.

3) Large number of paths: We repeat the experiment with
sets of channel realizations with 10 taps, where the MLSE
baseline can no longer be evaluated.

B. Training

The training is carried out using the Adam optimizer [37],
starting from a random initialization of the CNNDemapper sub-
block. For the CNNM , we consider an initialization that starts

with the preamble channel only. The PredV al is initialized
with zeros. The starting learning rate is 10−2 and we set an
exponential decay that acts every epoch with a multiplicative
factor of 0.95. For all experiments, 20% of the data is used for
validation. The training is carried out with batch size B = 512
and for 20 epochs as we did not observe improvements for
longer runs. For the training, we use an A100 GPU server
with 40 GB of vRAM.

C. Simulation results

1) Comparison to the MMSE and MLSE baselines: For
the first scenario, we benchmark our ML-enhanced receiver
against the two baselines presented in Section II with different
channel estimation variants. The first baseline is the MMSE
equalization with the outdated channel from the preamble,
h0ms and log-MAP demapping (MMSE-MAP-Preamble). The
second baseline is the MMSE equalization with perfect chan-
nel knowledge for each time instant (we refer to this as the
oracle channel) plus the log-MAP demapper (MMSE-MAP-
Oracle). The third one is the MMSE equalization with the
channel estimated from the GI, and log-MAP demapping
(MMSE-MAP-GI). The fourth is the MLSE equalization with
perfect channel knowledge together with the approximate log-
MAP demapper (MLSE-Oracle). Fig. 5a shows the BER of
these receiver methods for different SNRs.

From the results we derive two conclusions. First, not
updating the channel information results in a significant per-
formance degradation over time, as can be seen by comparing
MMSE-MAP-Preamble to the MMSE-MAP-Oracle. In this
scenario, MMSE-MAP-GI shows the same performance as
MMSE-MAP-Oracle since the delay spread of the channel
is largely within the GI, allowing to estimate all important
components in an overdetermined system. The second obser-
vation is that the ML-enhanced receiver ML4RX outperforms
even the MMSE-MAP-Oracle by up to ∼ 7 dB, and is
part-way to the optimal MLSE-Oracle baseline. The MLSE-
Oracle has optimum performance, outperforming the MMSE
baselines as well as ML4RX. In order to isolate the gains of
the improved channel estimation block, we also compare the
ML4RX curve to that of the Demapper only architecture with
MMSE equalization. We observe up to ∼ 5 dB improvement
when using the full ML4RX architecture.

2) Soft information: Fig. 5b shows the results using the
same baselines with LDPC coded data with rate 3/4. The
ML4RX receiver shows significant gains compared to the
traditional receiver, with up to 6 dB gains for both rates, and is
closer to the optimal performance of MLSE. The results with
other code rates, not included in the figure, are similar. For
example, with code rate 1/2 the ML4RX receiver has up to 7
dB gain compared to the MMSE baselines and performs close
to MLSE. These results shows that the soft bit information
generated by the receiver pipeline is compatible with standard
channel coding [38].

3) Evolution over time: As can be observed in Fig. 6a, the
BER obtained using the channel estimation from the preamble
at time zero degrades quickly over the 1 ms scale. In order to

0 5 10 15 20 25
SNR (dB)

10-6

10-4

10-2

100
BE

R

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
MLSE-Oracle
Demapper only
ML4RX

(a) Uncoded

0 5 10 15 20 25
SNR (dB)

10-6

10-4

10-2

100

BE
R

(b) LDPC with code rate 3/4

Fig. 5: BER achieved by ML4RX and the baselines

0 0.2 0.4 0.6 0.8 1
time (ms)

10-6

10-4

10-2

100

BE
R

(a) 4-tap NLOS channel

0 0.1 0.2 0.3 0.4
time (ms)

10-3

10-2

10-1

100

BE
R

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX
M

0 5 10 15
SNR (dB)

10-6

10-4

10-2

BE
R

MMSE-MAP h0ms
MMSE-MAP-Oracle
MMSE-MAP-GI
MLSE-Oracle
Demapper only
ML4RX

0 0.1 0.2 0.3 0.4
time (ms)

10-4

10-2

100

BE
R

MMSE-MAP-Oracle
MMSE-MAP-Preamble
MMSE-MAP-GI
ML4RX
MLMLSE-Oracle

(b) 10-tap NLOS channel

Fig. 6: Evolution of the BER over time (SNR = 20dB)

keep the initial BER obtained at time zero, the channel would
need to be sampled very frequently (< 0.02 ms). Sampling
every 0.02 ms would incur a large communication overhead
of at least ∼ 10%. Under 1 ms, the channel changes due to
variations in the path gains but there are no changes observed
in the Angle of Arrival (AoA). Using the ML4RX receiver that
utilizes the GI estimations, we can improve the performance
over the MMSE-MAP-Oracle without incurring any overhead.

4) Large number of paths: Fig. 6b shows the results for
the corresponding experiment with a longer channel response.
After measuring the channel at time 0 ms, the BER obtained
using the MMSE-MAP-Preamble quickly degrades by several
orders of magnitude. The GI channel estimation is worse as
we are trying to estimate more coefficients and the system in
Eq. (12) becomes less overdetermined in this case. ML4RX
again outperforms all MMSE baselines, including the MMSE-
MAP-Oracle baseline with perfect channel information, by at
least a factor of 2 to 4 in terms of BER.

VI. EXPERIMENTAL EVALUATION

Although simulations offer important insights into the be-
havior of a system under controlled conditions, they cannot
cover all the effects of real systems. For example, the simu-
lated channel realizations do not have spatial coherence since
they are generated from generic distributions in Quadriga.
Having spatial coherence is important, as it allows the ML-
enhanced demapper to learn about a certain environment.
Additionally, in simulations, the static scenario does not
present any channel variations over time. However, on real
hardware, channel measurements vary over time, even for
static scenarios. This is mainly due to quantization effects,
imperfect symbol sampling, temperature variations, just to
name a few. Furthermore, under mobile scenarios, it is nearly
impossible to repeat the exact same trajectory, where even
vibrations play a major role considering the wavelength of
mm-wave frequencies.

A. Experimental platform

As basis for our experimental evaluation, we use the
high-performance mm-wave FPGA-based platform from [26],
whose implementation is freely available as open-source. The
platform features an FPGA-based baseband processor capable
of handling 2 GHz of bandwidth per channel and 60 GHz
phased antenna arrays [39], as shown in Fig. 7. We use the
testbed in a memory-based configuration to transmit stored

Fig. 7: Wideband mm-wave experimentation platform

packets over-the-air, and at the receiver store the received
samples in the on-board memory to analyze them in post-
processing.

B. Experimental results

a) Static deployment: First, we consider a scenario where
the transmitter and receiver are static at a distance of 4 m in an
indoor room. Over time, the channel varies due to changes in
path gains [40–42] and internal noise in the devices. We first
evaluate the uncoded achievable BER over all SNRs up to
0.1 ms after the preamble. For oracle channel knowledge, we
insert one full preamble per data block for accurate channel
estimation. This corresponds to very small and thus ineffi-
cient packets, which would result in 70% preamble overhead,
15% header overhead, and only 15% available for data. The
results are presented in Fig. 8a. The BER obtained with the
channel estimates from the GI, MMSE-MAP-GI, has worse
performance than the other baselines. The ML4RX receiver
outperforms the MMSE-MAP-Oracle baseline by ∼ 4 dB
and the MMSE-MAP-Preamble by up to ∼ 8 dB, and the
largest gains are obtained at higher SNRs. We believe that
this is due to the importance of having up-to-date knowledge
of the relevant paths that have the largest variability as seen
in Fig. 8d, while being able to access the information from
the outdated channel estimation which includes all paths and
therefore is still relevant. The naive baseline of considering
the first channel coefficients from the GI and the non-observed
channel coefficients from the outdated preamble gave worse
BER than both the MMSE-MAP-GI and the MMSE-MAP-
Preamble and, for this reason, has not been included.

We consider an SNR of 20 dB and study the variation of
the BER over time for the different receiver baselines up to
1 ms. We observe that the MMSE-MAP-Preamble degrades
quickly. The ML4RX receiver improves the performance over
the oracle and this is maintained over the whole 1 ms. We

10 15 20
SNR (dB)

10-6

10-4

10-2

100
BE
R

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX

(a) BER of fixed transmitter and re-
ceiver over variable channel

0 0.2 0.4 0.6 0.8 1
Time (ms)

10-6

10-4

10-2

BE
R MMSE-MAP-Preamble

MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX

(b) BER for 20 dB (solid) and 12 dB
(dashed)

0 20 40 60 80
Overhead %

0

2000

4000

6000

Th
ro
ug

hp
ut

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX
Max Throughput MCS

(c) Throughput for 20 dB/MCS 12.1
(blue) and 12 dB/MCS 11 (black)

0

0.2

0.4

0.6

0.8

Am
pl
itu
de
re
ce
iv
ed

0 10 20 30 40 50

observed by
the guard
interval
channel
estimation

not observed by
the guard interval
channel estimation

(d) Error bars presenting the absolute
maximum change over 0.5 ms.

Fig. 8: Results of the static experiments on FPGA test bed

AP Training
Evaluation

(a) Trajectories

0 0.5 1
Time (ms)

0.008

0.01

0.012

0.014
0.016
0.018

BE
R

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX

(b) BER variation over 1 ms for 12 dB

0 20 40 60
Overhead %

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut

MMSE-MAP-Preamble
MMSE-MAP-GI
MMSE-MAP-Oracle
ML4RX
Max Throughput MCS

(c) Throughput for 12dB/MCS 12
(16QAM LDPC rate 3/4)

0

0.2

0.4

0.6

0.8

1

Am
pl
itu
de
re
ce
iv
ed

0 10 20 30 40 50

(d) Error bars presenting the absolute
maximum change over 0.5 ms.

Fig. 9: Results of the mobility experiments on FPGA test bed

present the achievable throughput using the different baselines
for an LDPC code rate of 13/16 in Fig. 8c. The low overhead
and low BER performance of the ML4RX receiver results in
throughput improvements over all baseline schemes. In this
high-SNR scenario, the MMSE-MAP-GI is quite accurate with
low probability of packet error and same low overhead as
ML4RX, and their throughput is thus very similar.

However, for a more complex scenario at 12 dB, the
performance of MMSE-MAP-GI degrades drastically. Figs.
8b and 8c present the evolution over time of the uncoded
BER and the throughput achieved for the different baselines
using MCS 11, plotted in black. In this scenario, the BER of
MMSE-MAP-GI is significantly higher than that of any other
scheme. In contrast, the ML4RX receiver still outperforms the
MMSE baselines including the oracle. In addition, the ML4RX
matches the maximum throughput achievable at this MCS,
outperforming by 13% the baseline with the best overhead
configuration for this scenario. Finally, Fig. 8d shows the
channel variations despite the scenario being static.

b) Mobile deployment: To evaluate the performance of
the ML receiver under mobility, we deploy two nodes in a
7x7m room. While the receiver is static, the transmitter moves
through the room while it sends data for 12 seconds for each
measurement. We perform 5 different trajectories and we use
4 for training and 1 for evaluation, as shown in Fig. 9a.

The results for the mobile deployment shown in Fig. 9
follow the trend of the static scenario, but with an overall
higher BER. However, for this dynamic case, the ML4RX sig-
nificantly outperforms the MMSE baselines. This is reflected

in a throughput improvement of 620% over the baselines as
can be seen in Fig. 9c. This is due to the 50% improvement
in BER which results in a lower packet error probability at
this rate. Due to the slow speed, the channel variations over
time observed in Fig. 9d are of the same order as those seen
for the static scenario in Fig. 8d for the same timescale. We
again remark that the training does not need to cover the whole
environment for the receiver to achieve this performance and
training and evaluation trajectories differ. This is critical to
ensure the practicality of our design.

VII. RELATED WORK

A. ML for the PHY

Different works have proposed to use ML to replace one
or multiple blocks of the PHY, showing that it can not only
reduce the complexity of certain methods but also improve
the performance. For example, a neural network for soft
demodulation can achieve good performance at reduced com-
putational complexity compared to the traditional log-MAP
demapping [7]. In [8], the authors propose a CNN network for
equalization and obtain a lower error vector magnitude than
the recursive least squares and multi-modulus algorithms. In
[16], the channel estimation and symbol detection blocks for
an OFDM system are substituted by ML designs, which helps
with limited pilots and CP removal.

Closest to ML4RX are the works that implement ML-based
receivers. [43] introduces a Deep-Learning based OFDM re-
ceiver. They replace the classical main units of an OFDM
receiver with neural network counterparts. In addition, the

authors evaluate the system with real and simulated data and
provide an FPGA implementation of the receiver. Similarly,
DeepRX [17] presents a fully convolutional neural network
architecture for a SIMO system. The inputs to their system are
the raw channel estimates as well as the pilot positions and
the received symbols of a transmission time interval for all
subcarriers. These are used to estimate LLRs at the receiver.
Results show that their architecture performs as well as the
MMSE equalization with perfect channel information and it
outperforms MMSE with imperfect channel information. Ad-
ditionally, they outperform the baseline in scenarios with inter-
cell interference. Both, our approach and DeepRX, have the
same complexity as MMSE for SC and OFDM respectively,
but the larger DeepRX architecture results in a larger overall
model.

In [18], DeepRX is extended to support multi-input multi-
output (MIMO). They introduce new layers to preprocess
the received symbols and the channel estimates and ex-
plore two transformations to preprocess the data, a maximum
ratio combining multiplicative approach and a fully learnt
multiplicative transformation. In almost all channel models
they show similar performance to the MMSE baseline with
perfect channel knowledge. Finally, [12] presents an ML-
enhanced receiver architecture for multi-user MIMO OFDM
systems. They jointly optimize a neural network block to
improve the channel error statistics and a demapper neural
network, while performing classical channel estimation and
equalization. Their architecture has better performance than
the MMSE baseline with imperfect channel knowledge and
for very high speeds is better than the MMSE with perfect
channel information.

However, none of the above mentioned works tackle the
problem of frequency selective channels for SC systems, and
specifically, apply ML for the PHY for wide-band high-
frequency communications. In addition, most of the them are
evaluated via simulations rather than experimental evaluations
and none of them address mobility cases, and in many cases
only have the same performance as MMSE with perfect
channel information, whereas MM4RX outperforms it.

B. Improved channel prediction

In OFDM, the cyclic prefix is usually an unknown sequence
and the channel is estimated using pilots inserted in the
frequency domain. However, the work in [44] proposes to
modify the standard and insert a pseudo-random sequence
in place of the cyclic prefix. They do this to improve the
robustness of the channel estimation in rapidly fading channels
while accepting the resulting ISI due to the lack of a cyclic
prefix. In contrast to our work, they consider delay spreads
corresponding to 4 to 8 taps which can easily be estimated
inside the GI.

In [45], the authors consider the time-frequency response
of fast fading communication channels as a two-dimensional
image for an OFDM system. They show that they can in-
terpolate the unknown values of the channel response using
the information obtained from pilots better than MMSE with

imperfect channel knowledge. More recently, in [46] the
authors attempt to interpret Deep Learning (DL) based channel
estimation architectures under linear, nonlinear and inaccurate
channel statistics. They show, using the mean squared error
to the perfect channel, that the DL estimator is close to
the MMSE performance under linear systems and has better
performance under non-linear systems. However, they do not
present results showing how this affects the BER performance.
In [47], the authors propose a DL based channel estimation
algorithm for MIMO OFDM systems. Their network is based
on 2D CNNs and LSTM layers. They train their architecture
by optimizing the mean squared error (MSE). They show
that with their improved channel estimation the performance
improves over the MMSE with imperfect channel knowledge
for speeds of 50 and 300 km/h and that their normalized MSE
is lower than different baseline algorithms like MMSE.

Overall, these works have shown that improving the MSE is
possible using DL techniques to improve channel estimation
in OFDM systems. However, these works show less gains than
the ML-based receivers presented in [17], where the receivers
achieved the same performance as MMSE with perfect channel
knowledge. However, since these works are not tested on the
same dataset, these results are hard to compare. Our work
differs from the above in that we jointly optimize the channel
estimation with equalization and demapping.

VIII. CONCLUSION

We designed and implemented an ML-enhanced mm-wave
receiver pipeline that jointly optimizes the ML sub-blocks for
channel estimation, equalization, and demapping. The chan-
nel estimation takes into account additional periodic channel
estimates obtained from the GIs. We show using simulated
channels that under a small number of taps our receiver
pipeline can improve over the MMSE baseline and is close to
MLSE which is the optimum receiver. We also test our receiver
via experiments with an FPGA-based mm-wave testbed with
phased antenna arrays and show that under a static scenario
our receiver improves by ∼ 7 dB over the classic baseline
MMSE-MAP using the channel estimation from the preamble
and ∼ 4 dB over the MMSE-MAP Oracle baseline. For future
work we intend to extend our receiver pipeline to MIMO. In
mobile scenarios, the gains are much higher with a throughput
improvement of 620% over the baselines. Since obtaining
channel estimates from the GIs that do not contain interference
is not straightforward in MIMO scenarios, it will be highly
interesting to explore what networks can learn to bootstrap
the outdated channel information.

ACKNOWLEDGMENTS

This paper is supported by the projects TSI-063000-2021-
59 RISC-6G and TSI-063000-2021-63 MAP-6G funded by
the Ministry of Economic Affairs and Digital Transformation
under the European Union NextGeneration-EU plan, and by
the Madrid Regional Government through the TAPIR-CM
program (S2018/TCS4496).

REFERENCES

[1] S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep learning-
based traffic prediction for network optimization,” in 2018 20th ICTON.
IEEE, 2018, pp. 1–4.

[2] S. Zhang, S. Zhao, M. Yuan, J. Zeng, J. Yao, M. R. Lyu, and I. King,
“Traffic prediction based power saving in cellular networks: A machine
learning method,” in Proceedings of the 25th ACM SIGSPATIAL, 2017,
pp. 1–10.

[3] S. H. Haji and S. Y. Ameen, “Attack and anomaly detection in iot
networks using machine learning techniques: A review,” Asian journal
of research in computer science, vol. 9, no. 2, pp. 30–46, 2021.

[4] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[5] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep Learning
Based Communication Over the Air,” IEEE Journal of Selected Topics
in Signal Processing, vol. 12, no. 1, pp. 132–143, 2017.

[6] J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a 6g
ai-native air interface,” IEEE Communications Magazine, vol. 59, no. 5,
pp. 76–81, 2021.

[7] O. Shental and J. Hoydis, “Machine llrning: Learning to softly demod-
ulate,” in 2019 IEEE GC Wkshps. IEEE, 2019, pp. 1–7.

[8] Z. Chang, Y. Wang, H. Li, and Z. Wang, “Complex cnn-based equaliza-
tion for communication signal,” in IEEE 4th ICSIP, 2019, pp. 513–517.

[9] D. Garcia Marti, D. Badini, D. De Donno, J. Widmer et al., “Scalable
machine learning algorithms to design massive mimo systems,” in
ACM/IEEE MSWIM, 2021.

[10] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE
Transactions on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.

[11] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-
driven deep learning for physical layer communications,” IEEE Wireless
Communications, vol. 26, no. 5, pp. 77–83, 2019.

[12] M. Goutay, F. A. Aoudia, J. Hoydis, and J.-M. Gorce, “Machine learning
for mu-mimo receive processing in ofdm systems,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 8, pp. 2318–2332, 2021.

[13] C.-S. Choi, M. Piz, and E. Grass, Non-Ideal Radio Frequency Front-End
Models in 60GHz Systems. John Wiley and Sons, Ltd, 2010, ch. 3.

[14] J. Vieira, F. Rusek, and F. Tufvesson, “Reciprocity Calibration Meth-
ods for Massive MIMO Based on Antenna Coupling,” in 2014 IEEE
GLOBECOM. IEEE, 2014, pp. 3708–3712.

[15] S. Blandino, C. Desset, G. Mangraviti, A. Bourdoux, and S. Pollin,
“Phase-Noise Mitigation at 60 GHz with a Novel Hybrid MIMO
Architecture,” in Proceedings of the 2nd ACM Workshop on Millimeter
Wave Networks and Sensing Systems. New York, NY, USA: Association
for Computing Machinery, 2018, p. 39–44.

[16] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for
channel estimation and signal detection in ofdm systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114–117, 2017.

[17] M. Honkala, D. Korpi, and J. M. Huttunen, “Deeprx: Fully convolutional
deep learning receiver,” IEEE Transactions on Wireless Communica-
tions, vol. 20, no. 6, pp. 3925–3940, 2021.

[18] D. Korpi, M. Honkala, J. M. Huttunen, and V. Starck, “Deeprx mimo:
Convolutional mimo detection with learned multiplicative transforma-
tions,” in ICC 2021-IEEE International Conference on Communications.
IEEE, 2021, pp. 1–7.

[19] C. Han, A. O. Bicen, and I. F. Akyildiz, “Multi-wideband waveform
design for distance-adaptive wireless communications in the terahertz
band,” IEEE Transactions on Signal Processing, vol. 64, no. 4, 2015.

[20] S. Tarboush, H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri,
“Single-versus multi-carrier terahertz-band communications: A compar-
ative study,” arXiv preprint arXiv:2111.07398, 2021.

[21] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock,
Millimeter wave wireless communications. Pearson Education, 2015.

[22] H.-W. Chan, C.-T. Wu, C.-W. Jen, C.-Y. Liu, W.-C. Lee, and S.-J. Jou,
“A pseudo mmse linear equalizer for 60ghz single carrier baseband
receiver,” in 2017 IEEE 12th ASICON, 2017, pp. 643–646.

[23] Standards Committee, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 3: En-
hancements for Very High Throughput in the 60 GHz Band,” IEEE Std
802.11g-2003, no. June, 2003.

[24] IEEE working group, “IEEE Draft Standard for Information Technology-
Telecommunications and Information Exchange Between Systems Lo-
cal and Metropolitan Area Networks-Specific Requirements Part 11:

Wireless LAN MAC and PHY Specifications-Amendment,” IEEE
P802.11ay/D3.0, pp. 1–763, March 2019.

[25] Measurement Campaigns and Initial Channel Mod-
els for Preferred Suitable Frequency Ranges. [On-
line]. Available: https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5a7a6b182\&appId=PPGMS

[26] J. O. Lacruz, R. Ruiz, and J. Widmer, “A real-time experimentation
platform for sub-6 ghz and millimeter-wave MIMO systems,” in ACM
MobiSys’21, 2021.

[27] J. G. Proakis and M. Salehi, Digital communications. McGraw-hill
New York, 2001, vol. 4.

[28] R. Steele and L. Hanzo, Mobile radio communications: Second and third
generation cellular and WATM systems. IEEE Press-John Wiley, 1999.

[29] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[30] G. Forney, “Maximum-likelihood sequence estimation of digital se-
quences in the presence of intersymbol interference,” IEEE Transactions
on Information theory, vol. 18, no. 3, pp. 363–378, 1972.

[31] H. Vikalo, B. Hassibi, and U. Mitra, “Sphere-constrained ml detection
for frequency-selective channels,” IEEE transactions on communica-
tions, vol. 54, no. 7, pp. 1179–1183, 2006.

[32] IEEE Std 802.11, “Part 11: Wireless lan mac phy specifications,”
IEEE Standard for Information technology, Telecommunications and
information exchange between systems. Local and metropolitan area
networks, Specific requirements, 2020.

[33] IEEE Std 802.11ax, “Part 11: Wireless lan mac and phy specifications.
amendment 1: Enhancements for high efficiency wlan.” IEEE Standard
for Information technology, Telecommunications and information ex-
change between systems. Local and metropolitan area networks, Specific
requirements, 2021.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[35] W. Liu, F. Yeh, T. Wei, C. Chan, and S. Jou, “A Digital Golay-MPIC
Time Domain Equalizer for SC/OFDM Dual-Modes at 60 GHz Band,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60,
no. 10, pp. 2730–2739, Oct 2013.

[36] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-d
multi-cell channel model with time evolution for enabling virtual field
trials,” IEEE transactions on antennas and propagation, vol. 62, no. 6,
2014.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[38] IEEE Std 802.11, “Part 11: Wireless lan mac and phy specifica-
tions. ieee standard for information technology, telecommunications and
information exchange between systems. local and metropolitan area
networks,specific requirements,” 2016.

[39] Sivers Semiconductors, EVK06002 Development Kit, 2022, https://www.
sivers-semiconductors.com/sivers-wireless/evaluation-kits/.

[40] V. Va, H. Vikalo, and R. W. Heath, “Beam tracking for mobile millimeter
wave communication systems,” in IEEE GlobalSIP, 2016.

[41] Q. Qin, L. Gui, P. Cheng, and B. Gong, “Time-varying channel estima-
tion for millimeter wave multiuser mimo systems,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 10, pp. 9435–9448, 2018.

[42] L. Cheng, G. Yue, D. Yu, Y. Liang, and S. Li, “Millimeter wave time-
varying channel estimation via exploiting block-sparse and low-rank
structures,” IEEE Access, vol. 7, pp. 123 355–123 366, 2019.

[43] B. Azari, H. Cheng, N. Soltani, H. Li, Y. Li, M. Belgiovine, T. Im-
biriba, S. D’Oro, T. Melodia, Y. Wang, P. Closas, K. Chowdhury, and
D. Erdoğmuş, “Automated deep learning-based wide-band receiver,”
Computer Networks, vol. 218, p. 109367, 2022.

[44] P. Aggarwal, A. Gupta, and V. A. Bohara, “A guard interval assisted
ofdm symbol-based channel estimation for rapid time-varying scenarios
in ieee 802. lip,” in 2015 IEEE 26th PIMRC. IEEE, 2015, pp. 100–104.

[45] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Communications Letters,
vol. 23, no. 4, pp. 652–655, 2019.

[46] Q. Hu, F. Gao, H. Zhang, S. Jin, and G. Y. Li, “Deep learning for
channel estimation: Interpretation, performance, and comparison,” IEEE
Transactions on Wireless Communications, vol. 20, no. 4, 2020.

[47] Y. Liao, Y. Hua, and Y. Cai, “Deep learning based channel estimation
algorithm for fast time-varying mimo-ofdm systems,” IEEE Communi-
cations Letters, vol. 24, no. 3, pp. 572–576, 2019.

