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Deliverable information 

Description: Initial specification of ML-based analytics for movement prediction and network decision 

making with specific focus on native privacy-preserving machine learning algorithms. 

Due date: 30/06/2023 

Responsible: IMDEA Networks 

Partners involved: IMDEA Networks + Telefónica 

 

Work Package 3 (WP3): Machine Learning-based Movement and Network Analytics  

Activity 6: ML-based analytics for movements of people  

This activity is planned as Subcontracted. The company will take care of the work on joint optimization of RIS, 

mobile network and communication link configuration to improve network performance and coverage. At 

the date of production of this deliverable, the tender procedure is finished, and the work has been assigned 

to Pi Lighting. We are preparing the last administrative procedures in order to sign the contract as soon as 

possible and start the work.     

Activity 7: ML-based analytics for network control (Telefónica) 

Description: Initial report on the State of Art on design data-driven decisions, real-time and automated 

network optimization with Machine Learning for the effective operation of 6G networks  

In the scope of this task, we will be investigating how Machine Learning (ML) can be leveraged to control 

various aspects of the network. The current 5G networks face several challenges such as management and 

orchestration of Ultra-Dense Small Cells deployment as well as multiple-input multiple-output (MIMO) 

processing, interference issues, control and data plane separation, latency reduction and intelligent 

authentication, among others. These challenges are going to be significantly aggravated in the near future, 

with mobile data traffic experiencing a 50% to 100% growth every year.  

The upcoming 6G technology, while currently in the conceptual phase, aims to achieve significant 

advancements in various areas. These include a minimum latency improvement of 10 times (reduced to 1ms), 

increased device density to 10 devices per square meter, user experience data rates of at least 100 Gb/s, 

enhanced capacity of 150 Tpb/s per square kilometer, a substantial 30-fold increase in location accuracy 

(down to 1 cm), and a remarkable 300-fold boost in energy efficiency. These goals are part of the 6G European 

vision outlined in 2021. 

ML has emerged as one of the most promising techniques to address challenges for network orchestration 

and management tasks, having the potential to automatically learn and dynamically adapt to system 

dynamics and predict future scenarios. ML algorithms for wireless networks are expected to enable 

ubiquitous connectivity across the 6G communication platforms, application-based traffic steering across the 

access networks, high automation levels on the network edge, and dynamic network slicing. 
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ML-based analytics network decision making allows integration within the wireless technology to provide 

more efficient approaches to optimize network performance, resulting in a reduction of capital expenditures 

(CapEx), operational expenditures (OpEx), energy consumption, and increased Quality of Experience (QoE).   

Currently, wireless systems orchestration is mainly based on simple network analytics and 

inaccurate/suboptimal mathematical models. Instead, ML can provide model-agnostic solutions that 

automatically and dynamically adapt to optimize key metrics (Ali et al., 2020). Other uses include optimizing 

or improving specific tasks, such as replacing brute force methods or heuristics. To manage and maintain 

large-scale telecommunication networks, mobile network operators rely on a complex system of solutions 

that can gradually embrace algorithms driven by Artificial Intelligence (AI) for scheduling and orchestration 

purposes, which require the computational power of fog and cloud environments to efficiently deal with the 

large amounts of multi-dimensional data, e.g., originating from the highly dynamic traffic patterns of mobile 

end users. For instance, the performance of a cellular network is dynamic; it changes over time, it is prone to 

hardware and software failures, and it is affected by regular (e.g., holiday events, seasonal changes) and 

irregular events (e.g., traffic, weather conditions, flash crowds).    

There have been many applications of ML and deep learning on 5G/6G wireless networks (Mao et al., 2018; 

Zhao et al., 2020; Patil et al., 2022). With regards to network management, AI techniques have involved the 

design and resource allocation in wireless communications (HO et al., 2019). Specifically, ML algorithms 

applied to networks can be classified into three main classes, namely supervised learning, unsupervised 

learning, and reinforcement learning (RL), see (Syed et al., 2019) for a review. Supervised learning has 

applications in both the physical and network layers and can be deployed for caching, traffic classification, 

and delay mitigation, and some other applications related to these layers (Piran et al., 2019). Unsupervised 

learning has been applied to problems such as routing, coding and modulation, channel modeling, traffic 

optimization, parameter prediction in the network layer, and anomaly detection for both enhanced security 

and predictive maintenance. 

Deep RL applications include network availability optimization, scheduling, transmission optimization, on-

demand beamforming, traffic prediction, packet scheduling, and multi-objective routing (Piran et al., 2019; 

Shafin et al., 2019). To manage the ever-increasing connectivity density, a correct handling of the allocated 

spectrum is necessary, accounting for scarcity and underutilization. This requires dynamic techniques, such 

as symbiotic radio, cognitive radio and blockchain technology (Hong et al., 2014; Hewa et al., 2020).    

Federated learning-based analytics   

In recent years, networks have been increasingly becoming decentralized, making (privacy preserving) 

Federated Learning (FL) arise as another promising direction, by facilitating mobile devices to collaboratively 

learn a shared ML model without data exchange among them (Marmol et al., 2021). With regards to FL, it 

can enable the 6G shift from a centralized cloud-based system to a decentralized system spread across the 

cloud-edge continuum (Letaief et. al., 2019; Shafin et al., 2019; Tariq et al., 2020). Also, FL can allow the 

deployment of generalized models across many devices (Cousik et al., 2019) by distributing the training tasks 

to multiple decentralized edge nodes. 

However, FL requires the coordination of a central server that orchestrates the training, the client’s selection, 

the updates collection, and weights aggregation. This server constitutes a centralized authority that (1) users 

are forced to blindly trust to protect them from various information leakage attacks (Hitaj et al., 2017; Melis 
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et al., 2018), where malicious participating clients can de-anonymize sensitive training data through 

observation and isolation of a victim’s model updates, while at the same time (2) such centralized service is 

a single point of failure, which can become a bottleneck hindering the overall system scalability and 

performance (Lian et al., 2017).  To address these emerging issues, existing approaches either use (1) 

differential privacy (Bellet et al., 2018), thus decreasing the utility of the shared gradients, or (2) specialized 

hardware (e.g., Trusted Execution Environments (Mo et al., 2021)). 

Reinforcement learning for network performance optimization   

RL has attracted much interest among the networking community. RL algorithms are generally relevant for 

multi-objective high dimensional combinatorial optimization problems. These include mobile handover in 

cellular networks, MIMO processing, VNF-FG placement, coding scheme selection, modulation, beam 

forming, and power control, among others. As such, it has been broadly explored for a plethora of classical 

network-related problems (Luong et al., 2019; Tanveer et al., 2022). Among these problems, mobility 

management is a pivotal aspect in cellular networks. Next, we describe some of the most relevant works in 

this area.    

Sana et al. (Sana et al., 2020, Sana et al., 2020b) propose a multi-agent reinforcement learning (MARL) 

framework respectively applied to user association, and handover optimization in cellular networks. In these 

works, agents are deployed on User Equipment (UE), and their objective is to optimize the global network 

sum-rate (i.e., the total data rate exchanged between UEs and base stations). Other works consider the case 

of multi-objective optimization. For example, in Li et al. (2017) the authors propose ORLA, an online RL 

algorithm applied to user association in vehicular networks. Agents are deployed in cells, and they seek to 

maximize the users’ service rate while minimizing the variance across users. Agents collect historical 

information of user associations in their own cells, but they do not exchange state information between 

them. Similarly, in Dinh et al. (2021) the authors follow a similar approach for handover optimization in dense 

mmWave networks. They propose to distribute agents on UEs, and agents seek to jointly optimize cell-user 

associations and the beamforming configuration in MIMO antennas. Also, Ding et al. (2020) propose a multi-

agent DQN-based framework for user association and power control in heterogeneous networks. Agents are 

deployed on UEs and they aim to optimize energy efficiency on UEs (i.e., ratio between throughput and power 

consumption). Likewise, Guo et al. (2020) uses a multi-agent Proximal Policy Optimization (PPO) algorithm to 

maximize the overall throughput while reducing the handover frequency between cells. Agents are deployed 

on UEs, and they jointly optimize handovers and power allocation. Lastly, Shao et al. (2021) propose a novel 

method based on RL and Graph Attention Networks. In contrast to the previous works, here the authors 

propose a multi-agent system where agents are deployed in base stations and exchange information 

between them. Particularly, this system is applied to distributed slicing resource management in dense 

cellular networks.   
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Work Package 4 (WP4): Machine Learning-based Privacy Preserving Analytics  

Activity 8: Native privacy-preserving machine learning algorithms for localization 

(IMDEA) 

Description: To initiate the development of privacy-preserving machine learning algorithms for localization, 

we have started to deploy a 5G test bed using OpenAirInterface open-source software. In this task, this test 

bed allows us to perform localization of User Equipment (UE) using conventional methods such as the Closed-

Form and NNLS/Brute-Force algorithms. 

Having accomplished this initial phase, our subsequent focus is to apply machine learning techniques that 

prioritize privacy in order to determine the user's position. By incorporating privacy-preserving machine 

learning algorithms into the localization process, we aim to enhance the security and confidentiality of user 

data while still achieving accurate localization results. 

From Experiments to Insights: A Journey in 5G New Radio Localization   

In this work, we present an efficient methodology for deploying an experimental setup with three gNBs. Our 

objective is to assess and validate algorithms and research findings by utilizing over-the-air measurements of 

5G localization signals. We take into consideration standardized localization procedures and real-world 

operating conditions. To begin with, we perform a comprehensive analysis of the existing landscape of open-

source platforms and associated hardware for 5G localization. This analysis sheds light on the key technical 

components involved. Subsequently, we showcase the effectiveness of a testbed focused on positioning 

reference signals (PRS) for 5G localization. This testbed utilizes an open-source platform based on PRS 

technology. This study has been accepted for presentation at the 21st Mediterranean Communication and 

Computer Networking Conference (MedHoc Net 2023).   

When examining the open-source platforms, our focus is on describing the primary open-source software 

(SW) platforms and tools that are available for implementing a 5G Standalone (SA) mobile network 

infrastructure. This includes both the Next Generation Radio Access Network (NG-RAN) and the 5G Core 

Network (5GCN). We aim to provide an overview of the main open-source solutions that can be utilized to 

develop and deploy a 5G SA network, encompassing both the radio access and core network components. 

Primary open-source software (SW) platforms 

i. OpenAirInterface: The OpenAirInterface (OAI) offers 5G Core, gNB, and UE implementations that are 

compliant with NR Release 15/16. The source code of OAI is developed in C programming language, 

prioritizing real-time performance requirements. It is important to note that the distribution of the OAI 

source code is governed by the OAI Public License, which outlines the terms and conditions for its usage 

and distribution.  
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ii. srsRAN: The srsRAN platform is considered to be the most similar to OAI in terms of functionality. Like 

OAI, srsRAN provides software implementations of the gNB and UE, supporting features up to NR Release 

15. However, unlike OAI, srsRAN does not include its own implementation of the 5G Core Network 

(5GCN). Instead, it relies on Open5GS, which is an open-source implementation of the 5G Core 

conforming to 3GPP Release 16. Open5GS is written in the C programming language. In terms of 

programming languages, srsRAN is written in both C and C++. It is important to note that the distribution 

of srsRAN is subject to the GNU AGPLv3 license, which specifies the terms and conditions for its usage 

and distribution. 

iii. Aether: Aether is a project endorsed by the Open Networking Foundation (ONF) with a focus on 

implementing private cellular networks. Unlike OAI and srsRAN, Aether goes beyond providing 

implementations of just the Radio Access Network (RAN) and 5G Core Network (5GCN). While it includes 

these components, Aether aims to provide a comprehensive solution for private cellular networks, 

encompassing additional functionalities and features. Aether’s RAN is based on OAI.  

Among the options of OAI, srsRAN, and Aether, it is worth noting that OAI is considered the most advanced 

platform. It is directly implemented in our experimental setup, indicating its suitability for our specific needs 

and requirements. The decision to utilize OAI highlights its level of development and readiness for practical 

implementation in our experimental environment. 

Experimental setup 

To conduct 5G PRS (Positioning Reference Signal) Time of Arrival (TOA) measurements, the DL-TDOA 

technique is employed. This technique utilizes the PRS signal transmitted by a group of neighboring gNBs 

(base stations) and received by the UE (user equipment). By measuring the relative timing difference (RSTD) 

or Time Difference of Arrival (TDOA) between each pair of gNBs, the UE's position can be estimated. The 

estimation of the UE's position is achieved through multilateration or trilateration calculations, which are 

based on the principles of hyperbolic geometry. These calculations utilize the measured timing differences 

between the PRS signals received from different gNBs to determine the position of the UE in the 5G network. 

So outdoor measurements were conducted together with our partners at the University of Rome, Tor 

Vergata. These measurements are carried out under optimal conditions, ensuring clear visibility of GPS 

satellites for accurate synchronization. The experimental testbed area, depicted in Figure 1, encompasses an 

area of nearly 60 square meters. It is important to note that all tests are conducted in an environment where 

there are no humans in close proximity to minimize any potential interference. We use 13 different selected 

UE locations to test our experimental positioning system as shown in Figure 1 (right).  

In the experimental localization testbed, the 5G NR (New Radio), Time Division Duplex (TDD) channel was set 

up using the N78 frequency band, which operates at 3500 MHz. The channel configuration included an 

instantaneous bandwidth of 80 MHz, which corresponds to 217 Resource Blocks (RBs). Additionally, a 

subcarrier spacing of 30 kHz was utilized in the testbed to facilitate the transmission and reception of signals 

for localization purposes. We use Software Defined Radios (SDRs) comprises four USRP X310 devices, three 

as gNBs and one as a UE.  
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Figure 1: Outdoor scenario and floor map representation where measurements are performed. 

 

 
Figure 2: Illustration of the main step for dataset collection, calibration, and TDOA-based positioning, CIR is the Channel Impulse 
Response estimation and IDFT is the Inverse Discrete Fourier Transform, RSTD is the Reference Signal Timing Difference 

The data was then collected and calibrated according to Figure 2, and then the UE measured the reference 

signal timing difference (RSTD) or TDOA of the PRS positioning signal from two base stations to estimate it’s 

position, i.e., time difference of arrival from gNB 1-2, gNB 1-3, and gNB 2-3.  

Evaluation and Results 

In our evaluation of localization accuracy, we assessed the performance of several algorithms: the Closed-

Form Solution, Brute-Force, and Non-Linear Least Squares (NLLS). The Closed-Form Solution involves 

algebraically solving Time Difference of Arrival (TDOA) equations. For a 2D scenario, this method requires 

three receivers to accurately determine the position. 

On the other hand, both the Brute-Force and NLLS algorithms aim to minimize the 2-norm discrepancy 

between the predicted and estimated TDOA values. They iteratively search for the optimal solution by 

adjusting the position estimates. 

These algorithms were utilized to gauge the accuracy of localization in our experimental setup, allowing us 

to compare their performance and determine the most effective approach. 
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Figure 3: CDF of the positioning error varying the localization algorithm 

In Figure 3, it is shows that Closed-Form algorithm deteriorates while the NNLS/Brute-Force algorithms 

exhibit significant improvement, achieving a positioning error of approximately 3m in 90% of cases.  

 

Activity 9: Scalable and distributed privacy-preserving algorithms (Telefónica) 

Description: In the scope of this task, we will be investigating the so-called Privacy-Preserving Machine 

Learning (PPML) algorithms and various adversarial attacks that can be mounted on the data, models, 

systems, and networks building and using them. The reason is because recent academic and industrial studies 

have demonstrated that adversaries can execute various types of attacks to retrieve sensitive information 

from the parameters of the ML model built, and the data used. Prominent examples of such attacks are 

various types of inference attacks, as well as data reconstruction and poison attacks. Motivated by these 

attacks, researchers have recently introduced several countermeasures to prevent them. Existing solutions 

can be grouped into three main categories depending on whether they rely on: (i) homomorphic encryption, 

(ii) multi-party computation (MPC) or (iii) differential privacy (DP). However, these solutions suffer from 

important privacy or performance limitations, or negatively affect the utility or fairness of the model. 

Federated Learning (FL)   

In this task, we focus on studying a PPML method called Federated Learning (FL) in McMahan et al. (2016) 

which has several benefits and allows us to get closer to the design of an ideal PPML algorithm that trains an 

ML model useful for central or distributed parties, without exposing data or model to unauthorized parties. 

In FL, the data required for training ML models are not explicitly exchanged between parties (clients and 

server). Instead, the model training is distributed among devices (clients) that have access to their local data 

shards for training local models. The global server receives these local models and performs aggregation and 

create a global FL model. 

Compared to centralized approaches, FL has a larger attack surface due to: 

i. Data distribution: Training data is distributed across multiple devices, increasing the risk of data 

breaches or attacks on individual devices with varying security levels. 
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ii. Communication channels: Communication between the central server and participating devices 

occurs over potentially insecure networks, making it susceptible to interception, eavesdropping, or 

man-in-the-middle attacks. 

iii. Client-side vulnerabilities: Vulnerabilities in client or edge devices can be exploited, compromising 

the integrity of the training process. 

iv. Aggregation and model updates: The central server aggregates model updates, making the 

aggregation process a potential vulnerability. Malicious clients could manipulate or poison updates, 

leading to compromised or biased global models. 

v. Privacy concerns: While FL aims to improve data privacy by avoiding the need to share raw data for 

training models, attacks aiming to compromise training data privacy can still be successful. 

To mitigate these risks and reduce the attack surface, robust privacy and security measures should be 

implemented. These include secure communication protocols, encryption, device authentication, access 

controls, privacy-preserving and fairness guaranteeing machine learning methods, and regular security 

audits. 

Differential Privacy 

Differential Privacy (DP) was proposed by Dwork et al. (2014) to define DP, we let ε be a positive real number, 

and A be a randomized algorithm that takes a dataset as input. The algorithm A is said to provide ε-DP if, for 

all datasets D1 and D2 that differ on a single element, and all subsets O of the outcomes of running A: 

 
 

where the probability is over the randomness of the algorithm A. ε is also known as the privacy budget. DP 

is achieved by adding noise chosen from a specific distribution to provide the indistinguishability guarantee 

mentioned earlier in Balle et al. (2018) and Geng et al. (2015). The traditional model of DP defined earlier, 

also known as the central DP (CDP) model, implicitly assumes the existence of a trusted entity that does not 

deviate from protocol specification and adds the calibrated noise to provide the DP guarantee. Thus, the 

outcomes are DP by post-processing. However, such assumptions may not always hold in all settings. To 

alleviate these strong trust assumptions, local DP (LDP)5 assumes that each data contributor adds the noise 

locally, i.e., in-situ. This ensures that the inputs themselves are DP, and any function calculated atop of it is 

DP by post-processing. Naturally, such a mechanism has limited knowledge of the overall function being 

computed on all the data and overestimates the amount of noise required to provide privacy. The 

relationship between LDP and CDP is dependent on the mechanism used to achieve DP. For example, the 

Laplacian mechanism2 ensures that ε-LDP also provides ε-CDP. In this task, we plan to make use of DP and 

its different variants to design effective and efficient, privacy-preserving ML algorithms.  

Federated Learning with Differential Privacy   

McMahan et al. (2017) propose the first approach where DP can be combined with FL to provide formal 

privacy guarantees. Similar ideas are proposed in the work of Geyer et al. (2017). Bonawitz et al. (2016, 2017) 

propose the notion of secure aggregation, a variant of MPC which provides the central aggregator an 



 

 

 

 

 
 

Página 10 de 14 
Plan de Recuperación, Transformación y Resiliencia – Financiado por la Unión Europea – NextGenerationEU 
 

aggregated view of all gradients (noisy/non-noisy) from the clients. Truex et al. (2018) combine advances 

from LDP and MPC (through thresholding cryptography schemes) to provide a hybrid scheme to provide 

better privacy. Truex et al. (2020) also propose an approach using LDP. However, they formulate this based 

on an alternative DP definition. In this task, we plan to make use of the technologies of FL with DP and the 

different variants that can be produced, to design effective and efficient, privacy-preserving ML algorithms 

that are executed in a decentralized/federated fashion. 

Hierarchical Federated Learning (HFL)    

Abad et al. (2019) propose a mechanism to ensure communication-efficient and coordinated learning in the 

context of HFL. Here, the notion of hierarchies stems from the presence of clients communicating with small 

base stations (or cellular towers) which act as intermediaries, who further communicate with macro base 

stations (or the central aggregator). Similarly, Yuan et al. (2020) also propose a new protocol to optimize for 

communication efficiency in the LAN-WAN setting. This form of HFL is significantly different from that 

proposed by Briggs et al. (2020) which aims to segregate clusters of similar clients which can be 

independently trained on heterogeneous models. Across these prior works, the actors are consistent: there 

are the federated clients as in the status quo. 

In this task, we plan to make use of the implicit and explicit hierarchies that exist in nowadays networks, as 

well as the aforementioned technologies of FL with DP and their different variants, to design scalable, 

hierarchical-based, privacy-preserving ML algorithms that are executed in a decentralized/federated fashion. 

Adversarial Attacks 

It is important within this project and task to define what are the possible attacks we anticipate in FL systems 

and models. Next, we list such attacks that we must consider, as identified in literature: 

i. Targeted attacks (backdoor attacks) such as Input-instance and pattern key strategies 

ii. Untargeted attacks such as Byzantine attacks 

iii. Data-poisoning attacks (DPA) 

iv. Model-poisoning attacks (MPA) 

v. Distribution inference attacks (DIA) 

vi. Property and Attribute inference attacks (PIA & AIA) 

vii. Membership inference attacks (MIA) 

viii. Reconstruction attacks (RA) 

The PPML methods we design within this project and task will have to take such attacks into account, and 

offer solutions to the attacks that are relevant for the considered experimental and operational settings and 

threat models. 

Performance Metrics 

To assess the performance of the PPML methods we design within this project and task, we plan to take into 

account the following metrics, grouped in the type of dimension they focus on. The following is not an 

exhaustive list, and we will adapt it depending on design of the PPML methods, use cases and data 
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considered, etc.: 

i. ML model performance such as Test Accuracy, Test Area Under Curve, F1 Score, Precision, Recall   

ii. Privacy performance such as Epsilon and Clipping used in DP for defining privacy guarantees. 

iii. Fairness performance such as Disparate Impact, Equality of Opportunity, Equalized odds, etc 

iv. System performance such as Communication cost, Computational cost, Scalability, Asynchronicity 

 

Experimental Models  

In order to assess the performance of the PPML methods we design within this project and task, using the 

metrics proposed above, we plan to execute various types of experiments, using existing, state of art models. 

Some examples can be found next from open-source repositories such as: 

i. TensorFlow Repository (https://github.com/tensorflow/models/tree/master/official) 

ii. Kaggle Repository (https://www.kaggle.com/models ) 

Experimental Datasets 

In order to assess the performance of the PPML methods we design within this project and task, using the 

metrics proposed above, we plan to execute various types of experiments, using existing, state of art 

benchmark datasets. Some examples can be found next from open-source repositories (TensorFlow 

(https://research.google/resources/datasets/ ), Kaggle (https://www.kaggle.com/datasets ), etc.)  
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